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Preliminaries

• Neural networks/deep learning has gotten a lot of hype in recent years.
• In many areas, they have outperformed many traditional ML methodologies.
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Neural Networks



Artificial Neural Network

• An artificial neural network (ANN) is a learning algorithm that is (very) loosely
based on the structure of the brain.

• Somewhat vaguely, you will also hear the terms “multi-layer perceptron”
(MLP) used in place of ANN.

Universal Approximation Theorem[1]
A feed-forward network with a single hidden layer containing a finite number of
neurons can approximate continuous functions under mild assumptions on the
activation function.
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Neural Networks
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Neuron

X1

X2

X2

Ym

Ym = σ(α0m + αTmX)

• Output of each neuron is a linear function of the inputs.
• In hidden layers, the output is passed through an activation function σ.
• Common choices of σ include the rectified linear unit (RELU), sigmoid
function, softplus, etc.
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Activation Functions
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Fitting a Neural Network

• Model weights (α in the linear functions) are fitted by back-propogation,
basically a form of gradient descent.

• Loss functions: squared error for regression, squared error or cross entropy
for classification.

• To avoid overfitting, regularization (similar to ridge regression) is typically
applied. E.g., weight decay:

J =
∑

α2
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Parameter Decisions for Neural Networks

• Number of hidden units and layers: generally error on the side of having too
many hidden units than too few - flexibility is needed to capture
non-linearities in the data.

• Extra weights can be shrunk to zero with appropriate regularization.
• Learning rate is a key parameter in fitting ANNs as well as other models. The
learning rate controls the rate of gradient descent. A high learning rate
reduces training time, but also decreases accuracy. State-of-the-art is to use
an adaptive learning rate.

• The error function is non-convex and contains multiple minima, i.e., final
solution obtained depends on initial weights. Typical approach is to start
with a number of random starting configurations and choose solution with
lowest penalized error.

• Alternative is to average predictions over a number of ANN, i.e., ensemble
models.
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Software packages for Neural Networks

• Scikit-learn has a basic implementation of a multi-layer perceptron. For this
course, we will use this to avoid overloading students with different software
packages.

• However, you should be aware that if you are into serious work with ANNs,
alternative software are available that offer more features and efficiency.
Note that these packages are not limited to ANNs, but ANNs are the most
common use case.

• Tensorflow. Open-source package by Google. Very powerful and efficient, but a
very steep learning curve. Highly recommend that you use the Keras package
(already integrated into TF2) which provides a high level API to it similar to
scikit-learn in some ways.

• Pytorch. Open-source package by Facebook. Equally powerful as TF but also
steep learning curve.
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ANNs in Scikit-learn and TF2.0
from __future__ import annotations

from sklearn.neural_network import MLPRegressor

nn = MLPRegressor(hidden_layer_sizes=(5, 3), alpha=1e-4, max_iter=200, learning_rate_init=0.01)
nn.fit(x, y_reg)

# Equivalent Tensorflow 2.0
from tensorflow.keras import Input, Model
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam

x_in = Input(shape=(x.shape[1],))
x_h1 = Dense(5, activation="relu")(x_in)
x_h2 = Dense(3, activation="relu")(x_h1)
x_out = Dense(1)(x_h2)
model = Model(inputs=x_in, outputs=x_out)
opt = Adam(learning_rate=0.01)
model.compile(optimizer=opt, loss="mse")
model.fit(x, y_reg, epochs=200, batch_size=200)
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Beyond the Feedforward Neural Network

• ANNs can be an entire course in itself. Here, we cover some basic variations.
Convolutional NNs Uses covolutional operations to achieve translational

invariance. Especially important in image processing
applications. In modeling crystals with periodic boundary
conditions, this can also be a useful feature.

Recurrent NNs Connections between nodes form a directed graph along a
temporal sequence. Exhibits temporal dynamic behavior and
can handle variable length sequences of inputs. Applications:
handwriting recognition or speech recognition.
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Example Application: NN for interatomic potentials

• Atom-centered symmetry functions (ACSF)[2] to represent the atomic local
environments.

Gatom,rad
i =

Natom∑
j ̸=i

e−η(Rij−Rs)2 · fc(Rij),

Gatom,ang
i = 21−ζ

Natom∑
j,k ̸=i

(1+ λ cos θijk)
ζ · e−η′(R2ij+R

2
ik+R

2
jk) ·

fc(Rij) · fc(Rik) · fc(Rjk),

where Rij is the distance between atom i and neighbor j; η is the width of the
Gaussian; Rs is the position shift over all neighboring atoms; ζ controls the
angular resolution. fc(Rij) is a cutoff function.

• Fully connected ANNs describe the PES with respect to ACSFs.[3]
• Has been developed for Si, TiO2, water, metal-organic frameworks, ZnO,
Li3PO4, etc.
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Example Application: NNP for Si
J Behler 
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system into a number of atomic chains of varying length. 
Since the potential does not use reference electronic struc-
ture calculations for training the weight parameters, it 
does not fulfill the formal criteria of an NNP given in sec-
tion 2.3. Still, at that time it represented a very advanced 
approach, which, unfortunately, has only been applied to 
two benchmark studies for the binary hydrogen–carbon 
and carbon–nitrogen systems [100]. Surprisingly, after 
this early work the method was not used or extended for 
several years. Only in 2007 was the method taken up again 
and has been further developed into a genuine NNP for 
silicon, first based on tight-binding reference calculations 
[101], followed by an NNP employing DFT reference 
data in 2008 [102]. To date, no further applications of this 
method have been reported.

3.2. Structure of high-dimensional neural network potentials

The central idea of the high-dimensional NNP method 
reviewed here [103, 104] is the construction of the potential 
energy of a system using a set of atomic NNs instead of a 
single NN only. Each atomic NN, which corresponds to a 
standard feed-forward NN, provides as output the energy con-
tribution Ei of atom i. The potential energy Es is then given by 
the sum of all atomic energies,

∑=
=

E E .s

i

N

i

1

atom

 (4)

The atomic energies depend on the local chemical environ-
ments of the atoms, which are defined by a cutoff radius Rc. 
The positions of all atoms inside the cutoff sphere determine 
the atomic energy contribution, while atoms outside the cut-
off do not contribute. The specific size of the cutoff radius 
needs to be determined in convergence tests until all relevant 

interactions are included, and we found that typically a value 
of 6–10 Å is sufficient. The dependence of the atomic energies 
on the local chemical environments corresponds to an effective 
reduction of the dimensionality to the energetically relevant 
interactions, while the total potential energy in equation (4) is 
still determined by all degrees of freedom of the system.

The input of the atomic NNs is given by a set of many-
body symmetry functions, which will be described in more 
detail in section 3.3. For each atom they form a vector, which 
is a characteristic fingerprint of the atomic environment. The 
resulting high-dimensional NN scheme is shown schemati-
cally in figure 4 for a four-atom system. Each line represents 
one atom i starting from its Cartesian coordinate vector Ri on 
the left. Then a transformation of the coordinates to a symme-
try function vector Gi is performed, which typically consists 
of 50–100 symmetry function values. Since these functions 
describe the atomic environment, they depend on the positions 
of all neighboring atoms within the cutoff radius. The Gi are 
then used as input for the corresponding atomic NNs yielding 
the Ei, which are added in the final step to obtain Es.

It is important to note that for determining the weight 
parameters of the NN, it is not necessary to have access to 
individual atomic reference energies. Instead, the parameters 
of the atomic NNs are obtained using the total energy as the 
target quantity. This is important, because atomic energies are 
not observables and therefore they cannot be extracted from 
electronic structure calculations unambiguously, although 
some energy partitioning schemes have been proposed [105]. 
The optimization of the NN weights can then be carried out 
employing standard gradient-based optimization algorithms, 
which require the derivative of the total energy with respect to 
the weights of the atomic NNs.

There is only one type of atomic NN for each element, i.e. 
for a given chemical species the topologies of the atomic NNs 

Figure 4. Example of a high-dimensional NNP for a four-atom system [103, 104]. Each line represents one atom i. Starting from the 
Cartesian coordinate vector Ri, first a transformation to a symmetry function vector Gi is performed. This represents the input for the atomic 
NN yielding Ei. Finally, all atomic energies are added to obtain the (short-range) energy Es.

J. Phys.: Condens. Matter 26 (2014) 183001

At interatomic separations larger than the cutoff Rc this
function yields zero value and slope. The cutoff has to be
sufficiently large to include several nearest neighbors, and
in the present Letter a cutoff of 6 Å has been used.

Radial symmetry functions are constructed as a sum of
Gaussians with the parameters � and Rs,

 G1
i �

Xall

j�i

e���Rij�Rs�
2
fc�Rij�: (4)

The summation over all neighbors j ensures the indepen-
dence of the coordination number.

Angular terms are constructed for all triplets of atoms by
summing the cosine values of the angles �ijk �

Rij�Rik

RijRik

centered at atom i, with Rij � Ri �Rj,
 

G2
i � 21��

Xall

j;k�i

�1� � cos�ijk��

� e���R
2
ij�R

2
ik�R

2
jk�fc�Rij�fc�Rik�fc�Rjk�; (5)

with the parameters � �� �1;�1�, �, and � . The multi-
plication by the three cutoff functions and by the Gaussian
ensures a smooth decay to zero in the case of large inter-
atomic separations. We note that the G�

i in Eqs. (4) and (5)
depend on all atomic positions inside the cutoff radius and
thus represent ‘‘many-body’’ terms. Several functions of
each type with different parameter values are used. The
choice of symmetry functions and their parameters is not
unique nor does it need to be, and many types of functions
can be used, as long as the set of function values is suitable
for describing the environment of an atom.

To demonstrate the capability of the method we calcu-
lated the PES of bulk silicon using DFT in the local density
approximation (LDA). The system used for the optimiza-
tion of the NN parameters contains 64 atoms yielding 64
atomic environments per calculation. The calculations
were carried out employing the plane-wave pseudo-
potential method as implemented in PWSCF [7]. A cutoff
of 20 Ry was applied in combination with an ultrasoft
pseudopotential [8]. A mesh of 3� 3� 3 k points was
used. To improve the convergence of the metallic phases a
Fermi smearing of 0.1 eV was employed.

Since the functional form of the NN has no physical
motivation, the construction of an optimized NN requires
special care. The structures used to train the NN [9] were
initially taken from crystal structures including high-
pressure phases [10] and MD simulations at different pres-
sures and temperatures. Starting from this data set a series
of fits was generated employing different NN topologies,
i.e., numbers of hidden layers and nodes per hidden layer.
The best fits can then be used to optimize the NN in a self-
consistent way by performing MD, hybrid Monte Carlo
[11,12], and metadynamics [13,14] runs based on these fits
and subsequently recalculating several hundred represen-
tative structures with DFT. If the root mean square error

(RMSE) is larger than the error of the fit, the DFT calcu-
lations are added to the training set and new fits deter-
mined, which are used to generate more structures, and so
forth.

In total about 9000 DFT energies were calculated, 8200
of which were used for optimizing the NN and 800 as an
independent test set to investigate the predictive capability
of the NN for structures not included in the optimization
set. The RMSE of the optimization set is typically 4–
5 meV per atom, the RMSE of the test set 5–6 meV. For
the NN atomic forces we found a RMSE of about
0:2 eV= �A with respect to DFT. The subnet employed con-
sists typically of 2 hidden layers, each of which has about
40 nodes. In total 48 symmetry functions, i.e., input nodes,
with different values of �, Rs, and � have been used
resulting in a few thousand fitting parameters for the NN.

As a first test of the NN potential we calculated the
energy vs volume curves for the different crystal structures
of silicon [10]. It is well known that empirical potentials
are not able to describe the correct energetic sequence of
the various phases [15] while DFT is in good agreement
with the experimental data [10]. The NN potential accu-
rately reproduces the curves and the transition pressures of
DFT. To test the ability of the NN potential to describe also
disordered structures we calculated the radial distribution
function (RDF) of a silicon melt at 3000 K. The result is
shown in Fig. 3 and compared to other potentials of varying
form and complexity [15–17]. The MD simulations were
run for 20 ps (8 ps in the case of DFT [18]). The RDF
obtained from the NN is very close to the DFT data, while
there are significant deviations for the empirical potentials.
The origin of the small difference between DFT and the
NN is probably due to the fact that in the ab initio MD only
the � point has been used to sample the Brillouin zone,
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FIG. 3 (color online). Radial distribution function (RDF) of a
silicon melt at 3000 K as obtained using a cubic 64 atom cell
(a � 20:526 bohr). The curves shown were obtained from the
Bazant [17,19], the Lenosky [15,19], the Tersoff [16,20], a
neural network (NN) potential, and from density-functional
theory (DFT) [18].
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Figure 1: Left: Schematic of NNP architecture. Right: Comparison of radial distribution
functions from MD simulations using various interatomic potentials for Si.[4]
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Example Application: NNP-computed phase diagram for amorphous
Li-Si

241711-4 Artrith, Urban, and Ceder J. Chem. Phys. 148, 241711 (2018)

FIG. 1. Schematic of the genetic algorithm (GA) sampling approach using the specialized ANN potential. The GA is used to identify the most likely Li atoms to
be extracted at each delithiation step, starting with the crystalline Li15Si4 structure. The atomic positions and cell parameters of configurations with intermediate
compositions are subsequently optimized using DFT. The magnitude of the energies shown in the schematic is E3 < E1 < E2. Li atoms are shown as green balls,
Si is blue, and vacancies are red. See text for details of the algorithm.

1. The atomic configuration is represented as a vector (or
string), in which only Li sites are considered.

2. An initial population of N trial configurations is gener-
ated by randomly removing Li atoms from the input
structure (delithiation) to realize the specific Lix1 Si
composition of the present delithiation step.

3. The energy of each trial configuration is evaluated using
the ANN potential. If the optimization has converged
and no lower energy was determined over a certain num-
ber of steps, the algorithm is continued with step 4b, else
the optimization is continued with step 4a.

4a. For the following steps, each of the two trial configura-
tions from the current population is selected with prob-
abilities that are proportional to their energy such that
lower energy means higher selection probability. This
selection method is sometimes called roulette wheel
selection.73

5. N additional trials are generated by combination (cross-
ing) of two selected trials from the current population.
Each new trial configuration is further subject to random

FIG. 2. Energy of the Li360Si128 configurations during optimization with the
genetic algorithm (GA) coupled with the specialized ANN potential. The
energy of the current best configuration is shown as a black line (optimal
energy), the green line corresponds to the average energy of the GA population
of 32 trials, and the yellow line is the current maximal energy. The insets show
the initial structure and the final structure with lowest energy after optimization
with DFT. Li and Si atoms are colored green and blue, respectively.

changes with a mutation probability of pm (not shown
in Fig. 1).

6. The energies of the new trial configurations are eval-
uated using the ANN potential, and the algorithm
continues with step 3.

4b. Once the GA optimization has converged or a set num-
ber of steps have been completed, the M configurations
with the lowest energies are prepared for subsequent
geometry optimizations with DFT.

For the present work, we used a population size of N = 32 trials
and a mutation rate of pm = 10%. At least M = 30 configura-
tions were optimized with DFT at each composition. A Python
implementation of the above GA algorithm can be obtained
from http://ga.ann.atomistic.net.

Using the GA approach described above coupled with the
specialized ANN potential of Sec. III A, two different super-
cells of the c-Li15Si4 phase with compositions Li60Si16 (76
atoms) and Li480Si128 (608 atoms) were delithiated. The small
Li60Si16 cell was delithiated in intervals of each of the 2 Li
atoms, and the large Li480Si128 cell was delithiated in steps of
8 Li atoms.

As one concrete example, the course of the energy during
GA optimization of an atomic configuration with composi-
tion Li360Si128 is shown in Fig. 2. As seen in the figure, after
around 500 GA steps, the energy only changes by around
13 meV/LixSi, indicating that the optimization has reasonably
converged.

A total of 1263 structures from this GA sampling were
selected for subsequent DFT evaluation and geometry opti-
mization, and together with the initial reference set they form
the basis for the first principles phase diagram discussed
below.

IV. MOLECULAR DYNAMICS SAMPLING
WITH A GENERAL ANN POTENTIAL

The GA methodology described above makes two approx-
imations that may intuitively not seem justified: (i) The GA
sampling does not consider structural relaxations (though the

241711-5 Artrith, Urban, and Ceder J. Chem. Phys. 148, 241711 (2018)

final 30 or more low-energy configurations are fully optimized)
and (ii) the ANN potential is specialized for the GA sam-
pling and would not be suitable for other applications. To
verify that the GA sampling generated genuinely low-energy
metastable amorphous structures, we compare the resulting
phase diagram with the one obtained from heat-quench MD
simulations.

All MD simulations were carried out using the Tinker
software package78 and a Parrinello-Bussi thermostat79 in
the NVT ensemble. Generally, a time step of 2 fs was used
for the integration of the equation of motion with the Verlet
algorithm.80

A. ANN potential construction and molecular
dynamics simulations

To carry out reliable MD simulations, a fully general ANN
potential is required. For the training of such an ANN poten-
tial, a more extensive set of DFT reference calculations is
needed which also includes local structural motifs that do not
occur in near-ground-state bulk structures. This means that also
unphysical bonding situations and lattice parameters as well
as unusual coordinations should be present in the reference
data set so that structures that exhibit those features are not
artificially overstabilized during MD simulations. Therefore,
we also included clusters with up to ≈200 atoms and surface
slab structures that were truncated from the bulk in addition to
further bulk reference structures.

The additional structures were generated by repeated MD
simulations. In addition to the crystalline LixSi structures, the
lowest energy structures from the GA sampling of Sec. III B
were also used as starting points for MD simulations. Hence,
structures with up to 608 atoms were considered.

Short (<10 ps) ANN potential MD simulations of the
input LixSi structures at very high temperatures up to 3000 K
were employed to amorphize the structures. These heat-
ing simulations were followed by subsequent 2 ns long
simulations at lower temperatures (between 400 K and
1200 K) to obtain equilibrated low-energy structures. 400

structures (every 5 ps) along each 2 ns long MD trajec-
tory were recomputed with DFT single-point calculations
and subsequently included in the reference data set.

MD simulations and ANN potential re-training were
repeated until a low root mean squared error (RMSE) relative
to the DFT energies was obtained and all LixSi ground states
of the ANN potential and DFT energies were in agreement.
Iterative ANN potential training based on MD simulations is
also described in more detail in Ref. 52.

In total, around 45 000 reference structures were used
for the training of the general ANN potential, including the
reference structures of the specialized potential, the struc-
tures from GA sampling, and the additionally generated
bulk, slab, and cluster structures. Ten percent of this ref-
erence data set, around 4500 randomly selected structures,
was set aside as an independent test set for cross valida-
tion and was not used in the final ANN potential training.
Simultaneously, 10 different ANN potentials were trained
with different random initial ANN weight parameters on the
remaining 40 500 data points. Out of these potentials, the
one with the smallest overall error relative to the DFT refer-
ence energies reproduces the DFT ground state phase diagram
most accurately and was therefore selected for the subsequent
analysis.

The selected ANN potential achieves an RMSE of
7.7 meV/atom and a mean absolute error (MAE) of
5.9 meV/atom for the test set. The RMSE and MAE for the
training set are 6.3 and 5.7 meV/atom, respectively.

Figure 3(a) shows a comparison of the formation energies
predicted by the ANN potential and their DFT references for
all structures in the reference data set. As seen in the figure,
all features of the DFT formation energies are correctly repro-
duced by the ANN potential, and the energies of the individual
data points are in good agreement. In the present work, this
general ANN potential is only used for the purpose of vali-
dating the results of the approximate GA sampling. However,
this general potential will enable the investigation of other
properties of the LiSi alloy in future projects.

FIG. 3. (a) Phase diagram based on the
formation energies of all ∼45 000 LixSi
structures including bulk, surface slab,
and cluster structures from both the
training and test set. The energies pre-
dicted by the general ANN potential are
shown as green stars and the DFT ref-
erence energies are black circles. (b)
Only DFT formation energies of those
structures sampled by the GA with the
specialized ANN potential (green cir-
cles) and only those generated during
MD simulations with the general ANN
potential (black crosses).

Figure 2: From ref [5]
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Example application: ANNs to predict crystal stability

Figure 3: ANNs predict formation energies of garnets and perovskite crystals from Pauling
electronegativity and ionic radii.[6]
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Example application: CNNs for determination of crystal symmetry
from electron diffraction

Figure 4: CNNs to determine crystal symmetry from electron diffraction patterns with >

90% accuracy.[7]
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