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Preliminaries



Preliminaries

• We have covered two broad categories of methods for regression - the highly
rigid linear methods and the very flexible local methods such as kNN.

• There exist an entire spectrum of methods that assuming some structured
form for the unknown regression function in between these two extremes.
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Generalized Additive Models



Generalized Additive Models

• A generalized additive model has the form:

E[Y|X1, X2, ..., Xp] = α+

p∑
j=1

fj(Xj)

• If fj are expanded in terms of basis functions, this reduces to a least squares
fit.

• For generalized additive models, we fit each function using a scatterplot
smoother, e.g., cubic spline or kernel smoother.

• Penalized residual sum of squares is given as:

PRSS =
N∑
i=1

yi − α−
p∑
j=1

fj(Xj)

2

+

p∑
j=1

∫
f′′j (tj)

2dtj

• First term is our standard sum squared error, and the right term is penalizes
discontinuities (recall section on smoothing splines).
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Fitting generalized additive models

• Each function fj is a cubic spline of component Xj.
• To obtain unique solution, we impose a further convention that the functions
average to zero over the data, i.e.,

∑N
i=1 fj(xij) = 0∀j

• Backfitting algorithm:
1. Initialize α̂ = 1

N
∑N

i=1 yi, f̂j = 0.
2. Cycle through 1, 2, ...p, 1, 2, ...,p

f̂j ←− Sj

{yi − α̂−
∑
k̸=j

f̂k(xik)}N1


f̂j ←− f̂j −

1
N

N∑
i=1

f̂j(xij)

• Conceptually, fitting a cubic smoothing spline Sj to the residual
yi − α̂−

∑
k̸=j f̂k(xik) for each fj, and iterate until all f̂js stabilize.
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Extensions of Generalized Additive Models

• Note that we are not limited to cubic splines. E.g, local polynomial and
kernel methods, linear regression, and surface smoothers etc. can be used
with the appropriate choice of smoother Sj.

• GAMs can be used for classification as well, using the logit link function. For
example, for binary classification:

log
P(Y = 1|X)
P(Y = 0|X) = log

P(Y = 1|X)
1− P(Y = 1|X) = α+

p∑
j=1

fj(Xj)

Very commonly used in medical research: outcomes encoded as 0 or 1 (e.g.,
death/relapse of disease).
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Trees



Tree-based methods

• Partition feature space into regions (e.g.,
rectangles for 2 features case), and simple
model (e.g., constant) fitted into each
rectangle.

• Classification And Regression Trees (CART)

f̂(X) =
∑
m
cmI{(X1, X2) ∈ Rm}

• Main question: How to decide on
partitions/topology?
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FIGURE 9.2. Partitions and CART. Top right panel
shows a partition of a two-dimensional feature space by
recursive binary splitting, as used in CART, applied to
some fake data. Top left panel shows a general partition
that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the
partition in the top right panel, and a perspective plot
of the prediction surface appears in the bottom right
panel.

7



Regression tree fitting

• For CART, it is clear that each region should just be given by the average of
the observations yi in that region to minimize sum of squares.

• Best partition is usually not computationally tractable.
• Greedy algorithm: Start with all data, choose splitting variable Xj and split
point s such that:

min
Xj,s

 ∑
xi∈R1(Xj,s)

(yi − c1)2 +
∑

xi∈R2(Xj,s)
(yi − c2)2


• For each Xj, splitting point s can be found quickly via scanning of the
variables.

• This process is repeated for each region to grow the tree.
• Choice of tree size determines complexity of model - too large a tree results
in overfitting, too small results in underfitting. 8



Cost-Complexity Tree Pruning

• Generate the tree until a minimum node size is achieved.
• Note: perfect performance on training data can always be obtained with an
arbitrarily large tree, e.g., when the final ‘leaf’ nodes each contain only one
training observation.

• Number of samples in a node is therefore an indicator of tree complexity.
• Let subtree T ⊂ T0 be any tree that can be obtained by pruning T0.
• Cost-complexity criterion:

Cα(T) =
|T|∑
m=1

∑
xi∈Rm

(yi − ĉm)2 + α|T|

• Find the subtree Tα that minimizes Cα(T). α controls complexity. Large α

results in smaller tree.
• Weakest link pruning: successively collapse each node that produces the
smallest increase in

∑
xi∈Rm(yi − ĉm)

2.
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Classification Trees

• Instead of squared error, we need to use alternative node impurity measures:
Misclassification error 1/Nm

∑
i∈Rm I(yi ̸= k(m)) = 1− ˆpmk(m)

Gini index
∑

k ̸=k′ ˆpmk ˆpmk′
Cross-entropy −

∑K
k=1 ˆpmk log ˆpmk

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p

Entropy

Gini
 in

de
x

M
isc

las
sif

ica
tio

n 
er

ro
r

FIGURE 9.3. Node impurity measures for two-class
classification, as a function of the proportion p in
class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

10



Miscellaneous Issues with Trees

• Trees can be highly interpretable.
• Instability: small data changes can lead to very different splits.
• Lack of smoothness
• For some categorical problems, a misclassification in one category is more
serious than another, e.g., it is better to have a false positive for a disease
than a false negative. This can be handled by weighting the loss functions
appropriately.
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Example: Metal-insulator classification

• A similar problem is in Lab 2.
• We will only select a smaller subset of elemental properties to construct our
decision tree with. Namely, ’AtomicRadius’, ’AtomicWeight’, ’Column’,
’Electronegativity’, ’Row’. These properties are available for most elements
and we avoid obviously correlated features, e.g., AtomicRadius and
AtomicVolume.
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Decision Tree Regressor and Classifier in scikit-learn
from __future__ import annotations

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_text

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1)

decision_tree = DecisionTreeClassifier(criterion="entropy", random_state=0, max_depth=5)
decision_tree = decision_tree.fit(x_train, y_train)
train_accuracy = decision_tree.score(x_train, y_train)
test_accuracy = decision_tree.score(x_test, y_test)
r = export_text(decision_tree, feature_names=list(x.columns))
print(f"Train accuracy = {train_accuracy:.3f}; test accuracy: {test_accuracy:.3f}")
print(r)

decision_tree = DecisionTreeRegressor(criterion="mse", random_state=0, max_depth=10)
decision_tree = decision_tree.fit(x_train, y_train)
y_pred = decision_tree.predict(x_test)
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Classification accuracy

• Quite clearly, we cannot do much better than a ∼ 82% accuracy (test
misclassification rate of about 18%) with a tree-depth of around 15.

• Also, the training and test errors diverge significantly after a depth of around
8, which indicates overfitting.
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Interpreting the tree

• A 8-deep tree is not very easy to read. Here, we will use cost-complexity
pruning with a parameter α = 0.01 to prune the tree. The resulting tree has
an accuracy of around 74%. Let’s see how the decision is being made at the
first few levels.
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Interpreting the tree, contd.

• Compounds with mean χ ≤ 2.03 are mostly
classified as metals.

• Compounds with mean χ > 2.03 are classified as
insulators, i.e., mostly ionic compounds
containing chalcogenides and halides with high χ.

|--- ElectronegativityMean <= 2.03
| |--- ColumnMin <= 2.50
| | |--- ElectronegativityMax <= 5.09
| | | |--- class: 0
| | |--- ElectronegativityMax > 5.09
| | | |--- class: 1
| |--- ColumnMin > 2.50
| | |--- ColumnMax <= 44.50
| | | |--- class: 0
| | |--- ColumnMax > 44.50
| | | |--- class: 0
|--- ElectronegativityMean > 2.03
| |--- AtomicRadiusMean <= 0.98
| | |--- AtomicWeightMean <= 22.98
| | | |--- class: 1
| | |--- AtomicWeightMean > 22.98
| | | |--- class: 1
| |--- AtomicRadiusMean > 0.98
| | |--- ColumnMax <= 31.00
| | | |--- class: 0
| | |--- ColumnMax > 31.00
| | | |--- class: 1
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Feature importance

• Another way of interpreting trees is
using the feature importance.

• The importance of a feature is the
(normalized) total reduction of the
criterion brought by that feature.
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Receiver Operating Characteristic (ROC) Curve

TPR =
TP
P =

TP
TP+ FN

FPR =
FP
N =

FP
TN+ FP

• Plot of the TPR (sensitivity) vs FPR
(1-selectivity).

• y = x line denotes random guessing (TPR =
FPR).

• The greater the area under curve (AUC),
better the performance.
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Multivariate Adaptive Regression Splines (MARS)

• Essentially a modification of CART to use step-wise linear regression.
• MARS uses piece-wise linear basis functions:

(x− t)+ =

{
x− t , x > t
0 ,otherwise

(t− x)+ =

{
t− x , x < t
0 ,otherwise

• Implementation available in the py-earth package.
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FIGURE 9.11. The function
h(X1, X2) = (X1 − x51)+ · (x72 − X2)+, result-
ing from multiplication of two piecewise linear MARS
basis functions.
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Ensemble learning

• So far, we have covered the basics of using a single model (linear, kernel,
tree) to perform an ML prediction.

• In ensemble learning, we use multiple models and average the results to
improve prediction performance.

• Advantage: lower variance and in many cases, dramatically improved
prediction performance.

• Disadvantage: some of the interpretability is lost in the process.
• Here, we will cover two of the most popular ensemble learning approaches -
boosting and bagging.

• While ensemble learning can be applied to any of the previous ML methods,
we will focus here on their application to decision trees.
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Boosting

• One of the most successful ML approaches in the past few decades.
• Concept: combine many ”weak” learners in a ”committee”.
• Can be used for either classification or regression.
• Weak classifier: One whose error rate is slightly better than random guessing.
• Apply weak classifier to repeatedly modified versions of data to produce a
sequence of weak classifiers.

• Predictions from sequence are combined using weighted majority vote:

G(x) = sign
( M∑
m=1

αmGm(x)
)

• Weights αm are computed by boosting algorithm and is the contribution of
each weak learner Gm(x).

• While G(x) can be any classifier, we will focus here on using decision trees as
the base classifier. 21



AdaBoost.M1 Algorithm (Classification)

1. Initialize observation weights as wi = 1/N.
2. For m = 1 to M:

2.1 Fit classifier Gm(x) to training data using weights wi.
2.2 Compute errm =

∑N
i=1 wiI(yi ̸=Gm(xi))∑N

i=1 wi
2.3 Compute αm = log 1−errm

errm .
2.4 Set wi = wi exp[αmI(yi ̸= Gm(xi))], i = 1, 2, ...N. Conceptually, increase weights in

step m for observations that are misclassified in step m− 1.
3. Output G(x) = sign

(∑M
m=1 αmGm(x)

)
Multivariate Analysis of the Vector Boson Fusion Higgs Boson 7 

Figure 6 A view of the transverse plane depicting the collinear 
approximation. The tau neutrinos go collinearly with the tau leptons 
such that their sum matches the missing transverse energy. 

 
Figure 5 Training of an AdaBoost classifier. The first classifier trains on unweighted data, then  
reweights the data for the next and so on to produce the final classifier. 

 
2.6 Discriminant Variables 
     When training a BDT, a balance should be found between the number of variable inputs to the 
BDT and the performance of the BDT. Additionally, while BDTs are known to handle correlated 
variables quite well, it is superfluous to include two strongly correlated variables, only one of which 
adds discriminatory power to the classification.  
 
     Much of my work this summer was spent investigating variables, both common and newly 
devised, to search for new discriminating variables for use in a multivariate analysis. The most 
important in the analysis was the ditau mass, calculated via the collinear approximation. 
 

2.6.1 Collinear Approximation 
     In the case of VBF, the mass of the ditau should correspond to the mass of the Higgs, for Z→ 𝜏𝜏 
the mass of the Z boson, and for 𝑡𝑡 we expect no clear peak. Thus, there are good physical motivations 
for the use of the ditau mass in our MVA. However, in order to fully reconstruct the ditau one needs 
the missing neutrinos. The collinear approximation accounts for the missing neutrinos by making the 
following assumptions. 
 

1. The tau neutrinos are perfectly collinear with their associated tau lepton. 

2. The missing transverse energy is entirely due to the tau neutrinos. 

     Under these approximations, the magnitude 
of the neutrino momenta becomes completely 
determined by the missing transverse energy. 
One is then left with a simple matter of 
constructing the neutrinos collinearly with the 
taus such that the sum of the neutrinos is 
precisely the missing transverse energy. 
 
The collinear approximation is not always 
applicable; when the tau leptons are emitted 
back to back in the 𝜙 plane, it is impossible to 
reconstruct the missing transverse energy. 
This leads to a simple constraint between taus:  

cos ∆𝜙 > −0.99 
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AdaBoost in scikit-learn

from __future__ import annotations

from sklearn.ensemble import AdaBoostClassifier

x_train, x_test, y_train, y_test = train_test_split(x, y_class, test_size=0.2)

decision_tree = AdaBoostClassifier(
DecisionTreeClassifier(criterion="entropy", random_state=0, max_depth=3),
n_estimators=20,

)
decision_tree = decision_tree.fit(x_train, y_train)
train_accuracy = decision_tree.score(x_train, y_train)
test_accuracy = decision_tree.score(x_test, y_test)
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Gradient Boosting

Figure 1: Source: Gradient
Boosting from Scratch

• We can think of the algorithm in Slide 22 as
essentially a forward stage-wise fit of an additive
model f(x) =

∑M
m=1 αmGm(x) (refer to [1] for details).

• Greedy approach in that it seeks to maximally
reduce the loss at each step, i.e., steepest descent,
by adjusting the weights iteratively.

• In contrast, gradient boosting attempts to fit a new
learner to the residuals of the errors from the
previous step.
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Gradient Boosting in Scikit-Learn

from __future__ import annotations

from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

model = GradientBoostingClassifier(n_estimators=50)
model.fit(x, y_class)
model.predict(x)

model = GradientBoostingRegressor(n_estimators=50)
model.fit(x, y_reg)
model.predict(x)
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Loss functions for regression

• We have thus far focused on the squared error loss L(y, f(x)) = (y− f(x))2

• Another common loss function is the absolute error L(y, f(x)) = |y− f(x)|
• MSE penalizes outliers with large observed residuals severely, and hence is
less robust in data with long-tailed distributions.

• MAE is more robust against outliers.
• Other criteria include the Huber loss:

L(y, f(x)) =
{

(y− f(x))2 |y− f(x)| ≤ δ

2δ(y− f(x)− δ2 otherwise

26



Loss functions for binary classification

• Consider a simple binary classification with two levels (-1, 1). The decision
boundary is at 0.

• Using the square error does not make sense, since we only care about
whether it is > 0 or < 0.

• Margin yf(x) is positive when prediction and actual value is in the same class,
and negative if they are in opposite classes.

• Need a loss that penalizes negative values much more than positive values
for margins, i.e., monotone decreasing function.

• Exponential loss: L(y, f(x)) = e−yf(x)

• Binomial/multinomial loss (can be used for K-classes):

L(y,p(x)) = −
K∑
k=1

I(y = Gk)fk(x) + log

( K∑
l=1

efl(x)
)
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Loss functions for binary classification
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FIGURE 10.4. Loss functions for two-class classi-
fication. The response is y = ±1; the prediction is
f , with class prediction sign(f). The losses are mis-
classification: I(sign(f) �= y); exponential: exp(−yf);
binomial deviance: log(1 + exp(−2yf)); squared er-
ror: (y − f)2; and support vector: (1 − yf)+ (see Sec-
tion 12.3). Each function has been scaled so that it
passes through the point (0, 1).

Figure 2: Loss functions for binary classification. Response: y = ±1. X-axis is the margin
y · f. Misclassification : I(sign(f) ̸= y); exponential: e−yf; binomial deviance: log(1+ e−2yf);
squared error: (y− f)2 ; and support vector: (1− yf)+. Source: [1]
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Random Forests

• Bagging: average many noisy, unbiased models to reduce variance.
• Random forest: Grow B trees at random and average the results.
Classification: majority vote (mode), regression: mean.

• Tree growing:
1. At each branch, select m variables at random from p variables.
2. Determine best split among the m.
3. Split node into two daughter nodes.
4. Repeat until minimum node size is reached.
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Random Forest Algorithm

Instance

Classification: Majority voting
Regression: Averaging

Prediction
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Example: Identification of Local Environments from K-edge XANES

Spectral Feature Vector
[x1, x2, ..., x199, x200]
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Figure 3: Workflow for classification of K-edge XANES spectra into one of 25 coordination
environments.[?]
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Example: Identification of Local Environments from K-edge XANES

Alkali
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Post-TM
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Figure 4: Comparison of different ML methods for K-edge XANAES classification.[?]
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The End
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