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Preliminaries



Preliminaries

• Linear models, even those based on basis expansion, have high bias.
• In contrast, kernel methods fit many models to each point using the
observations close to that point.

• Localization is based on a weighting function Kλ(x0; xi) that assigns a weight
to each observation xi based on distance to a query point.

• Typically, the kernel function has only a single parameter (λ) to determine
width of neighborhood.

• The “model” is the entire training data set.
• While undoubtedly effective in many instances, kernel methods lack
interpretability that is often desired for scientific applications.
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k Nearest Neighbor (kNN)

• Simplest possible model for prediction - even
simpler than linear regression!

• Given a set of observations, we take the average
of the k nearest neighbors as an estimate.

E[Y|X = x] = f̂(x) = Ave(yi|xi ∈ Nk(x))

• Prediction is bumpy, i.e., changes in average are
discrete at the boundary between the inclusion
and exclusion of a point.
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FIGURE 6.1. In each panel 100 pairs xi, yi are gen-
erated at random from the blue curve with Gaussian
errors: Y = sin(4X) + ε, X ∼ U [0, 1], ε ∼ N(0, 1/3).
In the left panel the green curve is the result of a
30-nearest-neighbor running-mean smoother. The red

point is the fitted constant f̂(x0), and the red circles
indicate those observations contributing to the fit at x0.
The solid yellow region indicates the weights assigned to
observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel
with (half) window width λ = 0.2.
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Improving on kNN

• kNN gives equal weight to all points that falls
within the k nearest neighbor region.

• Solution: use a weighted kernel that goes to
zero smoothly with distance from point.

• Nadaraya-Watson kernel-weighted average:

f̂(x) =
∑N

i=1 Kλ(x0, xi)yi∑N
i=1 Kλ(x0, xi)

• Epanechnikov quadratic kernel:

Kλ(x0, x) = D( |x− x0|
λ

),D(t) = 3
4(1− t2) if |t| ≤ 1
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FIGURE 6.1. In each panel 100 pairs xi, yi are gen-
erated at random from the blue curve with Gaussian
errors: Y = sin(4X) + ε, X ∼ U [0, 1], ε ∼ N(0, 1/3).
In the left panel the green curve is the result of a
30-nearest-neighbor running-mean smoother. The red

point is the fitted constant f̂(x0), and the red circles
indicate those observations contributing to the fit at x0.
The solid yellow region indicates the weights assigned to
observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel
with (half) window width λ = 0.2.
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Considerations

• Smoothing parameter λ determines the width of the local neighborhood.
Large λ means lower variance but higher bias.

• Metric window widths: As local density increases, vias decreases.
• Epanechnikov kernel is compact. Tri-cube kernel D(t) = (1− |t|3)3 if |t| ≤ 1 is
another compact kernel that is flatter and differentiable at bounday.

• Gaussian kernel is a popular non-compact kernel. Standard deviation
controls width of kernel.
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FIGURE 6.2. A comparison of three popular kernels
for local smoothing. Each has been calibrated to inte-
grate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support,
while the Epanechnikov kernel has none. The Gaus-
sian kernel is continuously differentiable, but has infi-
nite support.
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Code

from __future__ import annotations

from sklearn.model_selection import KFold, cross_val_predict
from sklearn.neighbors import KNeighborsRegressor

kfold = KFold(n_splits=5, shuffle=True, random_state=42)
knn = KNeighborsRegressor(n_neighbors=14)
yhat_knn = cross_val_predict(knn, x, y, cv=kfold)
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Local linear/polynomial regression

• Local linear/polynomial regression can be used, which corrects bias at
boundary regions at the expense of higher variance.

• For higher dimensions especially, local linear regression is preferred to local
constant fit.
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N-W Kernel at Boundary
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Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias
problems at or near the boundaries of the domain.
The true function is approximately linear here, but
most of the observations in the neighborhood have a
higher mean than the target point, so despite weight-
ing, their mean will be biased upwards. By fitting a lo-
cally weighted linear regression (right panel), this bias
is removed to first order

• Often used to interpolate within a region of feature space.
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Kernel Density Estimation

• Estimate the probability density function f̂X(x) as:

f̂X(x0) =
#xi ∈ N(x0)

Nλ
where λ is the width of the bin and N(x0) is the neighbor of x0 and N is the
total data count.

• Often, the smooth Parzen estimate is used.

f̂X(x0) =
1
Nλ

N∑
i=1

Kλ(x0, xi)

• Popular choice of Kλ is the Gaussian kernel ϕ( x−x0λ ).
• Essentially fX(x) is the convolution of the sample distribution with the
Gaussian distribution with standard deviation λ.
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Gaussian KDE
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FIGURE 6.14. The left panel shows the two separate
density estimates for systolic blood pressure in the CHD
versus no-CHD groups, using a Gaussian kernel density
estimate in each. The right panel shows the estimated
posterior probabilities for CHD, using (6.25).
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Example of Gaussian Density Estimation in Interatomic Potentials

• Gaussian Approximation Potential[1] uses a smooth-overlap of atomic
positions (SOAP) kernel in a Gaussian process model:

ρi(R) =
∑
j
fc(Rij) · exp(−

|R− Rij|2

2σ2atom
) =

∑
nlm

cnlm gn(R)Ylm(R̂),
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Kernel Density Classification

• Given the kernel density estimate for each class f̂j(X) and class prior πj, we
can use Bayes theorem to perform classification:

P(G = j|X = x0) =
πjf̂j(x0)∑J
k=1 πkf̂k(x0)

• However, density estimation for each class is not necessary if we only need
to perform classification.

• The key is to estimate the posterior decision boundary between classes
accurately.
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have interesting structure (left) that disappears when
the posterior probabilities are formed (right).
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Naive Bayes

• Highly popular approach and often outperforms more sophisticated
alternatives.

• Assumes features Xk are independent, i.e., fj(X) =
∏p
k=1 fjk(Xk), i.e., class

conditional probabilities can be estimated using 1D kernel densities!

log
P(G = l|X)
P(G = k|X) = log

πl
πj

+

p∑
k=1

log
flk(Xk)
fjk(Xk)

= αl +

p∑
k=1

glk(Xk)

We are converting a high-dimensional problem into simpler generalized
additive model (see later lecture on GAMs).
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Radial Basis Functions

• Treat kernel functions as basis functions.

f(x) =
M∑
j=1

D(
||x− εj||

λj
)βj

• Each basis function is index by location (εj) and scale parameter λj.
• Gaussian function is a common choice for D.
• Parameters are optimized, typically using a least squares approach.
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Mixture Models

• Type of kernel model.

f(x) =
M∑
m=1

αmϕ(x;µm,�m)

• Again, Gaussian mixture model is by far the most common choice.
• If covariance matrices are constrained to be scalars. then it is similar to a
radial basis expansion.

• Typically fitted using maximum likelihood approach / expectation
maximization (next lecture).

• Probability that observation i belongs in component m is given by:

r̂im =
αmϕ(x;µm,�m)∑M
k=1 αkϕ(x;µk,�k)

• Very often used in spectroscopy analysis. 15



CARS spectroscopy analysis using Gaussian Mixtures

Figure 1: Coherent anti-Stokes Raman scattering (CARS) analysis. For rapid (online)
determination of chemical composition. From ref. [2]
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The End
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