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Preliminaries

- Linear models, even those based on basis expansion, have high bias.

- In contrast, kernel methods fit many models to each point using the
observations close to that point.

- Localization is based on a weighting function Ky(xo; X;) that assigns a weight
to each observation x; based on distance to a query point.

- Typically, the kernel function has only a single parameter (\) to determine
width of neighborhood.

- The “model” is the entire training data set.

- While undoubtedly effective in many instances, kernel methods lack
interpretability that is often desired for scientific applications.
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k Nearest Neighbor (RNN)

- Simplest possible model for prediction - even
simpler than linear regression! N

Nearest-Neighbor Kernel

- Given a set of observations, we take the average 24
of the k nearest neighbors as an estimate. 2 @

E[YIX = x] = f(x) = Ave(yilx; € Ni())

- Prediction is bumpy, i.e.,, changes in average are
discrete at the boundary between the inclusion
and exclusion of a point.




Improving on RNN

- RNN gives equal weight to all points that falls
within the k nearest neighbor region.

Epanechnikov Kernel

— A(fvo)
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- Solution: use a weighted kernel that goes to
zero smoothly with distance from point. 5

- Nadaraya-Watson kernel-weighted average: (

_ S K (X0, X))V
S Ka(Xo, X;)

- Epanechnikov quadratic kernel:

fx)

IX — Xo|

K)\(Xo,X) = D( \

), D(t) = 2(1 _ ) if |t <1



Considerations

- Smoothing parameter X\ determines the width of the local neighborhood.
Large A means lower variance but higher bias.

- Metric window widths: As local density increases, vias decreases.

- Epanechnikov kernel is compact. Tri-cube kernel D(t) = (1 — [t]*)? if |[t| < 11is
another compact kernel that is flatter and differentiable at bounday.

- Gaussian kernel is a popular non-compact kernel. Standard deviation
controls width of kernel.
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from __future__ import annotations

from sklearn.model_selection import KFold, cross_val_predict
from sklearn.neighbors import KNeighborsRegressor

kfold = KFold(n_splits=5, shuffle=True, random_state=42)
knn = KNeighborsRegressor(n_neighbors=14)
yhat_knn = cross_val_predict(knn, x, y, cv=kfold)



Local linear/polynomial regression

- Local linear/polynomial regression can be used, which corrects bias at
boundary regions at the expense of higher variance.

- For higher dimensions especially, local linear regression is preferred to local
constant fit.

N-W Kernel at Boundary Local Linear Regression at Boundary

- Often used to interpolate within a region of feature space.
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Kernel Density Estimation

- Estimate the probability density function )A“X(x) as

#xi € N(xo)
fX(Xo) N
where A is the width of the bin and N(xo) is the neighbor of xo and N is the
total data count.

- Often, the smooth Parzen estimate is used.
N

fx(xo) = NAZKA (X0, Xi)

- Popular choice of K} is the Gaussian kernel ¢(*5%2).

- Essentially fx(x) is the convolution of the sample distribution with the
Gaussian distribution with standard deviation A.




Gaussian KDE
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Example of Gaussian Density Estimation in Interatomic Potentials

- Gaussian Approximation Potential[1] uses a smooth-overlap of atomic
positions (SOAP) kernel in a Gaussian process model:

R—R
ch ij) - exp(— | U| chmgn (R),

atom nlm

1
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Kernel Density Classification

- Given the kernel density estimate for each class f;(X) and class prior ;, we
can use Bayes theorem to perform classification:
Wj]cj'(Xo)
> e Thf(X0)

- However, density estimation for each class is not necessary if we only need

P(G = jIX = Xo) =

to perform classification.
- The key Is to estimate the posterior decision boundary between classes

accurately.
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- Highly popular approach and often outperforms more sophisticated
alternatives.

- Assumes features X are independent, i.e, fi(X) = [Th_, fik(Xk), i.e, class
conditional probabilities can be estimated using 1D kernel densities!

P(G = [1X)

log —F—~ = lo —+ lo
SPG=rx) ~ ® ; gfm
p
= o+ Y gilXe)
k=1

We are converting a high-dimensional problem into simpler generalized
additive model (see later lecture on GAMS).
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Radial Basis Functions

- Treat kernel functions as basis functions.
z o5y

- Each basis function is index by location (ej) and scale parameter ;.
- Gaussian function is a common choice for D.

- Parameters are optimized, typically using a least squares approach.



Mixture Models

- Type of kernel model.

M
) =" amd(X: i, [lm)
m=1

- Again, Gaussian mixture model is by far the most common choice.

- If covariance matrices are constrained to be scalars. then it is similar to a
radial basis expansion.

- Typically fitted using maximum likelihood approach / expectation
maximization (next lecture).

- Probability that observation i belongs in component m is given by:

s am¢(X§ Mm7m)
S e e, )

- Very often used in spectroscopy analysis.
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CARS spectroscopy analysis using Gaussian Mixtures

Workflow in CARS Imageanalysis
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Figure 1: Coherent anti-Stokes Raman scattering (CARS) analysis. For rapid (online)
determination of chemical composition. From ref. [2]
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