
Unsupervised Learning

Shyue Ping Ong

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering
University of California, San Diego
http://materialsvirtuallab.org

1

http://materialsvirtuallab.org


Overview

Preliminaries

Principal Component Analysis

Cluster Analysis

2



Preliminaries



Preliminaries

• Here, we will take a digression from the supervised learning that we have
focused on so far, and go into unsupervised learning.

• In supervised learning, model development is carried out with a set of
input/output examples (training data).

• In unsupervised learning, the goal is to infer the properties of a set of data
(e.g., its distribution) without training examples.

• We will include dimensionality reduction techniques within the umbrella of
unsupervised learning.

3



Supervised vs Unsupervised Learning

Supervised learning
• Learn from example inputs and
outputs (labels).

• Clear metrics of success (e.g.,
maximum likelihood, MSE, MAE, etc.)

• Computationally efficient.

Unsupervised Learning
• Learn only from inputs.
• No rigorously-defined metric of
success.

• Computationally complex.

4



Principal Component Analysis



Principal Component Analysis (PCA)

• Briefly alluded to in lecture on Linear Methods (regressing on derived input
directions).

• Consider a dataset that has dimension p. The principal components provide
a sequence of best linear approximations to that data, of all ranks q ≤ p.

• Let the observations be x1, x2, ..., xN. The rank q linear model for representing
this data is given by:

f(λ) = µ+ Vqλ
• µ is a location vector, Vq is a p× q matrix with q orthogonal vectors, λ is a
length q vector of parameters.

• We want to minimize the “reconstruction error”,

min
µ,Vq,λ

N∑
i=1

||xi − µ− Vqλi||2
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Solution

• Minimizing wrt to µ and λi gives

µ̂ = x̄
λi = VqT(xi − x̄)

• Need to solve:

min
Vq

N∑
i=1

||(xi − x̄)− VqVqT(xi − x̄)||2
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Solution, contd.

• Construct singular value decomposition (SVD) of X, the N× p matrix of
centered xi.

X = UDVT

• U is an N× p orthogonal matrix, D is a p× p diagonal matrix with singular
values d1 > d2 > ... > dp and V is p× p orthogonal matrix with right singular
vectors v1, v2, ...vp as columns.

• UD are the principal components.
• Xv1 has highest variance among all linear combination of features, followed
by Xv2, Xv3, etc.
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Linear regression of bulk modulus on first two PCAs of elemental
features
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Code

from __future__ import annotations

from sklearn.decomposition import PCA

pca = PCA()
pca.fit(x)
x_pca = pca.transform(x)
print(pca.explained_variance_)

# Linear regression using PCA components
from sklearn import linear_model
from sklearn.model_selection import KFold, cross_val_predict

kfold = KFold(n_splits=5, shuffle=True, random_state=42)
mlr = linear_model.LinearRegression()
yhat_mlr = cross_val_predict(mlr, x_pca[:, 0:2], y, cv=kfold)
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Example of linear regression on PCA components
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Extensions to PCA

• Principal curves: smooth 1D curved approximation to data.
• Principal surfaces: curved 2D manifold approximation to data.
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Cluster Analysis

• Cluster observations into groups so that pairwise differences within cluster
tend to be smaller than differences between clusters.
Combinatorial algorithms Model observed data with no underlying

probability model.
Mixture modeling Assumes samples are i.i.d. from some population with a

probability density function.
Mode seekers Estimate modes from PDF.
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K-means

• One of the most popular iterative descent clustering methods.
• Often used with the Euclidean distance as the dissimlarity measure.

d(xi, x′i) = ||xi − x′i||
2

• Classic k-means measure distance to centroids of clusters.
• Other distance metrics are possible: weighted Euclidean, periodic boundary
condition distance, etc.

• Variants:
• K-medoids: Use one of points as cluster center instead of centroid. Removes
influence of large outliers that produce large distances.
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K-means Algorithm

1. Initialize a set of k means (centroids), e.g., choosing k observations to be the
initial means (Forgy algo) or randomly assigns a cluster to each observation
(random partition).

2. Assign each observation to the cluster with the smallest distance, i.e.,
partition the observations using the Voronoi diagram generated by means.

3. Recalculate the new means of the observations in the new clusters.
4. Algorithm is converged when assignment no longer changes.

Figure 1: Four steps of K-means algorithm. Source: Wikipedia 14



Practical considerations

• K-means is often used for vector quantization, i.e., split a set of values into k
levels.

• Determining K. Sometimes K is based on goals, e.g., if you have a scientific /
practical reason for having K clusters, e.g., only K instruments available or
you want to bin the compounds in K chemical classes.

• Elbow Method
• Goal: Minimize within-cluster sum of squares (wss), i.e, min(

∑K
k=1W(Ck))

• Plot wss vs k. Location of bend (knee) is generally considered as an indicator of
the appropriate number of clusters. k = 4 seems appropriate for Figure below.

• Other methods: Gap analysis
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Hierarchical Clustering

• Does not require specific of number of clusters.
• Require dissimilarity measure.
• Produce hierarchical representations in which the clusters at each level of
the hierarchy are created by merging clusters at the next lower level.

• Two paradigms: agglomerative (bottom-up merging) and divisive (top-down
splitting).

• Typically shown in a dendrogram.
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Recent application: Lithium Superionic Conductors

symmetry and ordering of the anionic lattice and showed strong
correlation with ionic conductivity (Fig. 2). Given the information
of lattice volume and anion chemistry critical for ion diffusion
were removed from the mXRD descriptor, the resulted clustering
of Li-conducting phases suggests that the long-range periodicity
of the anion lattice as encoded in mXRD plays a fundamental role
in Li-ion diffusion. By analyzing the structural origin of the
clustered groups, (Supplementary Note 6), we found the materials
in Group I, II, and III correspond to highly symmetrical fcc (face
centered cubic), hcp (hexagonal close packed), and bcc anion
lattices, respectively. For these anion lattices, Li ions are sym-
metrically confined in highly symmetric tetrahedral or octahedral
sites of anions (as an example, Fig. 2e for Li2S), and migrate
among these well-defined sites13. Groups IV, V, and VI show a
moderate level of variance, which can be understood as mild
distortion of the anion lattices. The distortion of anion lattices
disturbs Li+ bonding environments and causes Li+ to deviate
from highly symmetric locations to geometrically frustrated
configurations. For example, in LGPS and LLZO, the distorted

anion polyhedra generate multiple positions to host Li ions,
observed as the spread Li-ion probability density observed in
AIMD simulations (Fig. 2e), which were represented as partially
occupied Li sites (e.g., Li1 and 96 h sites in LGPS and LLZO,
respectively) from diffraction experiments4,5. Having multiple
positions for Li+ to occupy may lead to a degeneracy of Li sub-
lattice energy and an entropically-enabled disordered-Li sub-
lattice migrating among metastable configurations18,19.
Therefore, as observed in their mXRD representations, the SSLCs
clustered in group V and VI exhibit the characteristics of mod-
erately distorted anion lattices, which is closely related to dis-
ordered Li sublattice for fast Li-ion conduction. The materials in
Group VII, as reflected by the high standard deviation of mXRD
peaks, correspond to the least symmetric and highly disordered
anion lattices (Supplementary Figs 10–12). The highly disordered
anion lattices in these materials may locally trap Li ions and
impede Li-ion percolation across the crystal structure (Supple-
mentary Fig. 13), resulting in the low conductivities observed for
compounds in this group.
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Fig. 2 Unsupervised clustering of all Li-containing compounds. a Bottom-up tree diagram (dendrogram) generated using the agglomerative hierarchical
clustering method. The dashed line shows the position where all compounds are partitioned into seven groups, marked as I–VII from left to right and
distinguished by different colors. bMapping the dendrogram to the conductivity reveals the grouping of known solid-state Li-ion conductors in group V and
VI. The color bar shows the scale of σRT. The gray color indicates the conductivity has not been measured for the corresponding compound. c Violin plots of
σRT data grouped in the grouping. The outer shells of the violins bound all data, narrow horizontal lines bound 95% of the data, thick horizontal lines bound
50% of the data, and white dots represent medians. The dashed line shows the position of σRT= 10–4 S cm−1. d mXRD of all materials in group I–VI and a
part of group VII. The colored boxes mark the positions of main characteristic peaks for each group. e Crystal structures (left) and (right) Li sites (green
sphere) determined by local anion (yellow/red sphere) configuration, corresponding to isosurfaces (green) of Li probability density from AIMD
simulations. Li2S (top) with highly symmetric anion lattice and ordered Li sublattice versus LGPS (middle) and LLZO (bottom) SSLCs with distorted anion
lattices and disordered Li sublattices
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Figure 2: a. Dendrogram generated using the agglomerative hierarchical clustering
method. The dashed line shows the position where all compounds are partitioned into
seven groups, marked as I–VII from left to right and distinguished by different colors. b
Mapping the dendrogram to the conductivity reveals the grouping of known solid-state
Li-ion conductors in group V and VI. Reproduced from [1].
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Density-based Clustering

• Clusters are defined as areas of higher density.
• Most popular variant is Density-based spatial clustering of applications with
noise (DBSCAN).[2]

• DBSCAN groups together points that are closely packed together and marks
points that lie alone in low-density regions as outliers.

• Key parameters of the DBSCAN algorithm are:
• eps: Max distance between two samples for one to be considered as in the
neighborhood of the other.

• min_samples: No. of samples in a neighborhood for a point to be considered
as a core point.
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K-means and DBSCAN in scikit-learn
# Reading images using matplotlib
from __future__ import annotations

import matplotlib.pyplot as plt
from matplotlib import image

# load image as numpy array.
data = image.imread("example.png")
# Display image
plt.imshow(data)

from sklearn.cluster import DBSCAN

clustering = KMeans(k).fit(X)
print(clustering.labels_)
clustering = DBSCAN(eps=3, min_samples=2).fit(X)
print(clustering.labels_)
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The End
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