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Preliminaries

- Here, we will take a digression from the supervised learning that we have
focused on so far, and go into unsupervised learning.

- In supervised learning, model development is carried out with a set of
input/output examples (training data).

- In unsupervised learning, the goal is to infer the properties of a set of data
(e.g, its distribution) without training examples.

- We will include dimensionality reduction techniques within the umbrella of
unsupervised learning.



Supervised vs Unsupervised Learning
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Principal Component Analysis (PCA)

- Briefly alluded to in lecture on Linear Methods (regressing on derived input
directions).

- Consider a dataset that has dimension p. The principal components provide
a sequence of best linear approximations to that data, of all ranks g < p.

- Let the observations be xq, Xz, ..., Xy. The rank g linear model for representing
this data is given by:

f(X) = 4+ Vg

- pis a location vector, Vg is @ p x g matrix with g orthogonal vectors, A is a
length g vector of parameters.

- We want to minimize the “reconstruction error’,

min X; — Vg
MZH = Vo



- Minimizing wrt to x and \; gives
o= X
)‘i = VqT(Xi —)_()

- Need to solve:

N
min D 06— %) — VaVo (x %)
=1



Solution, contd.

- Construct singular value decomposition (SVD) of X, the N x p matrix of
centered x;.
X =UDV’

- Uisan N x p orthogonal matrix, D is a p x p diagonal matrix with singular
values dy > d, > ... > dp and Vis p x p orthogonal matrix with right singular
vectors vi, vy, ...Vp as columns.

- UD are the principal components.

- Xvq has highest variance among all linear combination of features, followed
by Xv,, Xvs, etc.



Linear regression of bulk modulus on first two PCAs of elemental

features
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Code

from __future__ import annotations
from sklearn.decomposition import PCA

pca = PCA()

pca.fit(x)

x_pca = pca.transform(x)
print(pca.explained_variance_)

# Linear regression using PCA components
from sklearn import linear_model
from sklearn.model_selection import KFold, cross_val_predict

kfold = KFold(n_splits=5, shuffle=True, random_state=42)
mlr = linear_model.LinearRegression()
yhat_mlr = cross_val_predict(mlr, x_pcal:, 0:2], y, cv=kfold)



Example of linear regression on PCA components
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Extensions to PCA

- Principal curves: smooth 1D curved approximation to data.

- Principal surfaces: curved 2D manifold approximation to data.
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Cluster Analysis

- Cluster observations into groups so that pairwise differences within cluster
tend to be smaller than differences between clusters.

Combinatorial algorithms Model observed data with no underlying
probability model.

Mixture modeling Assumes samples are i.i.d. from some population with a
probability density function.

Mode seekers Estimate modes from PDF.
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K-means

- One of the most popular iterative descent clustering methods.

- Often used with the Euclidean distance as the dissimlarity measure.
d(xi, xf) = [Ix; — x|

- Classic k-means measure distance to centroids of clusters.

- Other distance metrics are possible: weighted Euclidean, periodic boundary
condition distance, etc.

- Variants:

- K-medoids: Use one of points as cluster center instead of centroid. Removes
influence of large outliers that produce large distances.
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K-means Algorithm

1. Initialize a set of k means (centroids), e.g., choosing k observations to be the
initial means (Forgy algo) or randomly assigns a cluster to each observation
(random partition).

2. Assign each observation to the cluster with the smallest distance, i.e,
partition the observations using the Voronoi diagram generated by means.

3. Recalculate the new means of the observations in the new clusters.

4. Algorithm is converged when assignment no longer changes.
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Figure 1: Four steps of K-means algorithm. Source: Wikipedia



Practical considerations

- K-means is often used for vector quantization, i.e., split a set of values into k
levels.

- Determining K. Sometimes K is based on goals, e.g,, if you have a scientific /
practical reason for having K clusters, e.g,, only K instruments available or

you want to bin the compounds in K chemical classes.
- Elbow Method
- Goal: Minimize within-cluster sum of squares (wss), i.e, min(3 _, W(Cx))
- Plot wss vs k. Location of bend (knee) is generally considered as an indicator of
the appropriate number of clusters. k = 4 seems appropriate for Figure below.

- Other methods: Gap analysis
15



Hierarchical Clustering

- Does not require specific of number of clusters.
- Require dissimilarity measure.

- Produce hierarchical representations in which the clusters at each level of
the hierarchy are created by merging clusters at the next lower level.

- Two paradigms: agglomerative (bottom-up merging) and divisive (top-down
splitting).
- Typically shown in a dendrogram.



Recent application: Lithium Superionic Conductors
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Figure 2: a. Dendrogram generated using the agglomerative hierarchical clustering
method. The dashed line shows the position where all compounds are partitioned into
seven groups, marked as I-VII from left to right and distinguished by different colors. b
Mapping the dendrogram to the conductivity reveals the grouping of known solid-state
Li-ion conductors in group V and VI. Reproduced from [1].



Density-based Clustering

- Clusters are defined as areas of higher density.

- Most popular variant is Density-based spatial clustering of applications with
noise (DBSCAN).[2]

- DBSCAN groups together points that are closely packed together and marks
points that lie alone in low-density regions as outliers.
- Key parameters of the DBSCAN algorithm are:

- eps: Max distance between two samples for one to be considered as in the
neighborhood of the other.

- min_samples: No. of samples in a neighborhood for a point to be considered
as a core point.



K-means and DBSCAN in scikit-learn

# Reading images using matplotlib
from __future__ import annotations

import matplotlib.pyplot as plt
from matplotlib import image

# load image as numpy array.

data = image.imread("example.png")
# Display image

plt.imshow(data)

from sklearn.cluster import DBSCAN

clustering = KMeans(k).fit(X)
print(clustering.labels_)

clustering = DBSCAN(eps=3, min_samples=2).fit(X)
print(clustering.labels_)
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