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Preliminaries

- Linear methods can also be used for classification, i.e., decision boundaries

are linear.
- These methods are surprisingly effective across a large spectrum of datasets,

even compared to more complex ML models.



Metal vs Insulator Dataset

- To demonstrate the use of these methods, we will first discuss the “toy”
dataset.

- 2000+ binary (AxBy) compounds with experimental band gaps.

- Class 0: metals; Class 1: insulators.

- Using pymatgen, we can generate some simple features. Here, we will create
simply features based on the mean and absolute difference in
electronegativity between A and B (why?).
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Creating the features and classes

from __future__ import annotations

import numpy as np
import pandas as pd

from pymatgen.core import Composition

binaries = pd.read_csv("binary_band_gap.csv")

# We create a column holding the Composition object.

# Note the use of list comprehension in Python.

binaries["composition"] = [Composition(c) for c in binaries["Formula"]]
electronegs = [[el.X for el in c] for c in binaries["composition"]]

# Create the features mean and difference between electronegativities
binaries["mean_X"] = [np.mean(e) for e in electronegs]

binaries["diff_x"] = [max(e) - min(e) for e in electronegs]

# Label metals (band gap of 0. le-5 is used as numerical tolerance) as class 0
# Insulators are labelled as class 1.

binaries["class"] = [0 if eg < 1le-5 else 1 for eg in binaries["Eg (eV)"]]
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Basic concepts

- If there are K classes, we have a N x K indicator response matrix. Each row is
a vector Y = (Y4, Yo, ..., Y) where Y, = 1if the instance belongs to the kth
class and all other Ys are 0.

0 0 ... 1
0 ... 0

Y =
0 1 0

- For the kth response variable, the fitted ﬁ?(x) = Bro + BA,ZX

- Decision boundary between k and [ class is given by ﬁ(x) :f,(x).

- Input is divided into regions.

- Similar to linear regression, we can augment the input space with polynomial
(e.g, X3,X5, X1X2) and other basis functions, leading to boundaries that are
non-linear.



Linear regression of indicator matrix

- Treat each column of Y as a target. e
Least squares solution:

Y = X(X™X)7'XTY

- For each new observation x, we
compute fp(x) = (1,x")(XX)~'XTY.

- Find the largest component, and
that will result in the classification
k, G(x) = argmaxkeGﬁ(X).

- Major issue: some categories may
be masked for K > 3.
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Discriminant Analysis

- From Bayes rule, we have:

P(G = KIX = x) = —JITr

S filom
- where fi,(x) are the class conditional probability densities (P(X = x|G = k))
and m, are the prior probabilities of being in class k.

- Most common approach - assume Gaussian class densities.
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Linear Discriminant Analysis

- Assume all classes have a common covariance matrix, i.e., X, = .
- To compare two classes k and [, we can compare the log ratios.
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- At the decision boundary, P(G = R|X = x) = P(G = [|X = x), which leads to a
linear equation in x.
- Equivalently, we have

G(x) = argmax {Iog T — = Z e +X'E ,uk}
I3



Linear Discriminant Analysis, contd.

- In general, we do not know the prior distributions and covariance matrix.
These are estimated from the data.

- 7 = Ng/N
i = Zgi:k Xi/N
C 8 = S S0 — )T — ) /(N = K)
- Avoids masking problem of linear regression classification.
- For the example data,
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Quadratic Discriminant Analysis

- Covariances are not assumed equal.
1 _ 1
G(x) = argmax {Iog T — 5 (X = pe) (X = pag) — 5 log IZM}

- No cancellation of terms and decision boundaries are quadratic.
- Covariances must be estimated for each category.
- For the same metal-insulator example,
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Discriminant analysis in scikit-learn

from __future__ import annotations
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscrimina

lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)
X = binaries[["mean_x", "diff_X"1]

y = binaries["class"]

model = lda.fit(X, y)

y_pred = model.predict(X)

gda = QuadraticDiscriminantAnalysis(store_covariance=True)
y_pred = qda.fit(X, y).predict(X)
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Logistic regression

- Model posterior probabilities with linear function.
P(G=1X=x)

| T\ T T A) T
BRG=KX=x) _ OTHX
P(G = 2X = X) ;
log —mM8M 2 =
BRG=Kx=x) _ ‘oTHX
PG=K—1X=x) ;
8 pG=Kx=x) < Ptevot P

- Results in the following posterior probabilities:

_I_ T
PG=1x=x) = —2RlPothxn)
1+ 21:1 exp (Bio + B[ X)
1

1+ 5 exp (Bio + B7X)

PG=KX=x) =

13



Solving for the Logistic Regression Coefficients

- Typically fitted using maximum likelihood.

N
[(B) = _log P(G = RIX = xi; §)
=1
- Differentiation and setting % = 0 leads to equations that are non-linear in g.

- These equations are solved using some optimization algorithm (e.g,
Newton-Raphson, BFGS, etc.).



Logistic regression on metal/insulator dataset

from __future__ import annotations
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty="none", random_state=0)

model = clf.fit(X, vy)
y_pred = model.predict(X)
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Loss functions for binary classification

- Consider a simple binary classification with two levels (-1, 1). The decision
boundary is at 0.

- Using the square error does not make sense, since we only care about
whether it is > 0 or < 0.

- Margin yf(x) is positive when prediction and actual value is in the same class,
and negative if they are in opposite classes.

- Need a loss that penalizes negative values much more than positive values
for margins, i.e.,, monotone decreasing function.

- Exponential loss: L(y,f(x)) = e ¥

- Binomial/multinomial loss (can be used for K-classes):

K K
Ly, p()) = = S 1y = Ge)fie(x) + log (Z emx))

R=1 (=1



Loss functions for binary classification

Misclassification

Exponential

Binomial Deviance
—— Squared Error
—— Support Vector

Loss
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Figure 1: Loss functions for binary classification. Response: y = 41. X-axis is the margin
y - f. Misclassification : I(sign(f) # y); exponential: e=; binomial deviance: log(1+ e=/);
squared error: (y — f)? ; and support vector: (1— yf),. Source: [?]
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