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Preliminaries



Preliminaries

- In this lecture, we will look at various approaches to improving and extending
simple linear models.

- It is important to note that techniques and concepts such as regularization,
shrinkage and transformation of inputs are general and extend to other

models.



Improving on linear models



Feature selection

- Often, we want to improve on the least squares model.
- To improve prediction accuracy by sacrificing some bias for reduced variance.
- To improve interpretability by reducing number of features or descriptors.

- Three main approaches:

1. Subset selection
2. Shrinkage methods
3. Dimension reduction



Subset selection

Best subset selection

- Brute force approach.
- From p parameters, find the subset of k parameters that results in the

smallest RSS.

- Combinatorially expensive for large p and large k.

- Note that the best subset for a larger k does not necessarily include the best
subset for a smaller k.

Forward- or backward-stepwise selection

- Forward: Start with intercept, and iteratively add feature that most improves

the fit.
- Backward: Start with full model, and sequentially deletes the feature with

least impact on the fit. =



Shrinkage methods

- Subset methods is discrete, i.e., retains/discards variables, and tends to
exhibit high variance.

- Shrinkage methods are more continuous and do not suffer as much from
high variability.

- Basic concept: instead of finding the parameters that minimizes the RSS only,
we add a penalty term that penalizes more complex models, e.g., models with

larger coefficients or larger number of coefficients. This “shrinks” the
coefficients, in some cases, to 0.



Ridge regression (L, regularization)
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- A > 0is the shrinkage parameter. The larger the ), the greater the shrinkage.
- Also equivalent to:
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Ridge regression - Key details

- Intercept (Bo) is not part of penalty term.

- Inputs should be scaled prior to performing ridge regression, typically by
centering to the mean and scaling to unit variance:

Sx,

Zj =



LASSO (L, regularization)
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- Least Absolute Shrinkage and Selection Operator
- A > 0 is the shrinkage parameter. The larger the ), the greater the shrinkage.
- Also equivalent to:
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LASSO regression - Key details

- Intercept (Bo) is not part of penalty term.

- Inputs should be scaled prior to performing lasso regression, just as in ridge
regression.
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Subset vs ridge vs LASSO

- Consider a set of orthonormal features.

- Ridge: proportional shrinkage. No coefficients are set to zero.

- LASSO: “soft” thresholding. Translates coefficients by a factor, truncating at zero.

- Best-subset: “hard” thresholding. Drops all coefficients below a certain
threshold.

Best subset Ridge LASSO
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Other variants of shrinkage methods

- Elastic net penalty:

p p
A (azﬁf +(1-0a)) ﬁj)
j=1 j=1

- Least angle regression
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Derived input directions

- General concept: transforms input X into a smaller subset of zy, and regress
0N Zm
- Principal component regression:
- Transform non-orthonormal features into orthonormal directions using
Principal Component Analysis (PCA).
- Choose M directions that have the highest eigenvalues (explains the most
variance) and discards the rest.
- Will revisit at a later lecture.
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Partial Least Squares (PLS)

- Algorithm:
1. Compute ¢y; =< x;,y > for each J.
2. First transformed direction z; = Zj ¢yX;, 1.e., each direction is weighted by
strength of effect ony.
3. Regress y on z; to obtain 6;, orthogonalize Xq,...X, Wrt z; via x| = x; — 22221
4. Repeat until M < p coefficients are obtained.

- Finds directions with high variance and high correlation with response.



Extending linear methods




Preliminaries

- It is highly unlikely that the true function f(X) is linear in X.

- In some cases, linearity is a reasonable assumption, e.g., a first order Taylor
series expansion:

(x —a)’
31

00 = fla) + F(@)x - a) + (@) E = 4 p(a)

1 TF ooc

- Examples where this is used in materials science - linear elasticity (Hooke's
law), etc.

- More frequently, we perform a transformation of inputs to create a linear
basis expansion.
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Transformation of inputs




General concept

- Express:

M
f(X) = Z 5mhm(X)

where hy, is the mt" transformation of X.
- This is known as a linear basis expansion in X.
- The key lies in choice of the basis functions hy.



Examples of basis expansions

 hm(X) = X2, hn(X) = XiX;
- Polynomial expansion to higher-order Taylor series terms.
- No. of terms increases exponentially with degree of polynomial. For p variables,
we have O(p?) square and cross-product terms in a quadratic model. For a
degree d polynomial, we have O(p9).

© hm(X) = log(X;), sqrt(X;), exp(iX;): non-linear transformations in X.

- hm(X) = I(Lm < Xk < Um): Piece-wise division of regions of X. E.g., cubic
splines.

- hm(X) = RBF(||X — Xm||): radial basis function, e.g., Gaussian.

- Typically, basis functions are used simply to allow a more flexible
representation of the data. The basis functions can span a very large
(sometimes infinite) set, from which a selection has to be made:

- Restriction - Truncate the choice of basis functions using some criteria.
- Selection - Choose basis functions that contribute significantly to the fit.
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Linearization from physical laws

- Arrhenius law:

= Aexp(— %) — log(1) = log(A) — =2

RT RT
- Ising model:
Z Jjoioj = Mzh 0j
<Ij>
4 | | | 4




Compressive sensing for cluster expansions

- Cluster expansion of energy on lattice points:
H(o) =Eo+ ) [ J(o)
f f

* o is the vector representing occupation of lattice sites, [ ] are the cluster
basis functions, Jf are effective cluster interactions (ECls).
- Compressive sensing: essentially a LASSO to solve for ECIs.[1]
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Piece-wise polynomials




Piecewise polynomials

hi(X) = 1(X < &), ha(X) = 1(& < X < &), h3(X) = I(X = &)

wwwwwwwwwwwwwwwwwwwwwwwwwwwwww

A ] /\ p Parameters:
s X - No. of knots
' - Order of polynomial
S B ¢ &

st e e e - Continuity at knots (value, first derivative, second
derivative, etc.). For a polynomial of order N, we
usually want all derivatives < N to be continuous.
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Cubic splines

- Probably the most commonly used.

Piecewise Cubic Polynomials

- Continuous 1st and 2nd derivatives.

. - Natural cubic spline: polynomial is
%% AN o . .
TG / NG A linear beyond boundaries.
A" Nt ) ,
. . - Smoothing spline: Use
. - regularization to control complexity:

/\\V W *‘\\/ s RSS(f, \) Z{y,
Coe e £ / (oYt
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Examples of cubic spline fitting

- Spline-based Modified Embedded Atom Method (MEAM)

E=>o(ry) +Zu

i<j

ZP ru)"‘ Z fru)f lik Q[COS( j(l?)]

I<R.j,R'=i
where ¢, U, p, f and g can be approximated by cubic splines.

o) (eV)
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Demo: Cubic spline fitting in scipy

from __future__ import annotations
import numpy as np

## Import CubicSpline from scipy
from scipy.interpolate import CubicSpline

## x, y data for generating the spline fitting
X = np.arange(10)

y = np.sin(x)

## Fit the spline

cs = CubicSpline(x, y)

## Generate new x values

xs = np.arange(-0.5, 9.6, 0.1)

## Perform the interpolation on the new points
ys = cs(xs)
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Gaussian basis functions




Gaussian basis functions

hm(X) = exp(—R(X — Xm)?)

- Gaussian functions centered at xp,.

- Other similar types of functions include Lorentzian (hp,(x) = 1+1W)'
Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles.
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Example: Rietveld refinement
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Figure 1: Neutron powder diffraction diagram of CauO,

- Least squares fitting of theoretical line profile to match a measured
diffraction pattern (e.g., X-ray, neutron).[2]
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Example: Rietveld refinement, contd.

- Peak shape function:
PSF(6) = Q(0) @ N(6) @ W(0) + b(0)

- Q: Instrument broadening, A: Wavelength dispersion, W: Specimen function.
- For single phase, minimize:

2
N m
O =>"w (Y?bs - (b, +KY IM(X/)))
=1

J=1
- where yj(x;) is typically a pseudo-Voigt (mix of Gaussian and Lorentizan
function) function.
- Note that the background (b;) holds no useful structural information and
should be minimized in experiments.
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Wavelet and Fourier basis functions




Wavelet smoothing

Haar Wavelets

Symmlet-8 Wavelets
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- Complete orthonormal basis

- Shrink and select toward sparse

representation.

- Able to represent both time and frequency

localization efficiently (Fourier basis can
only do frequency localization).
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Example: NMR Spectroscopy

Applications:

- Suppression of large unwanted spectral line
(left).

- Rephasing spectrum perturbed by
time-dependent magnetic field.

Figure 2: Subtraction of a large - Noise filtering
spectral line: (top) the original
spectrum of polyethylene, (bottom)
reconstructed spectrum after
removal of CH, peak.[3]

- Detecting phases in a mixture
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Example: Fourier transform for analysis of extended X-ray absorp-

tion fine structure (EXAFS)

(R

G
0

- (a) The extended edge (orange part) contains information

of atom chemical environment.

- (b) Subtract the background, convert energy to k-space

unit, and multiply the normalized intensity by k?

- (c) Fourier transform k-space information to real space

and obtain the first shell bond length.
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The End

31



	Preliminaries
	Improving on linear models
	Subset selection
	Shrinkage
	Derived input directions

	Extending linear methods
	Transformation of inputs
	Piece-wise polynomials
	Gaussian basis functions
	Wavelet and Fourier basis functions

