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Preliminaries



Preliminaries

• In this lecture, we will look at various approaches to improving and extending
simple linear models.

• It is important to note that techniques and concepts such as regularization,
shrinkage and transformation of inputs are general and extend to other
models.
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Improving on linear models



Feature selection

• Often, we want to improve on the least squares model.
• To improve prediction accuracy by sacrificing some bias for reduced variance.
• To improve interpretability by reducing number of features or descriptors.

• Three main approaches:
1. Subset selection
2. Shrinkage methods
3. Dimension reduction
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Subset selection

Best subset selection

• Brute force approach.
• From p parameters, find the subset of k parameters that results in the
smallest RSS.

• Combinatorially expensive for large p and large k.
• Note that the best subset for a larger k does not necessarily include the best
subset for a smaller k.

Forward- or backward-stepwise selection

• Forward: Start with intercept, and iteratively add feature that most improves
the fit.

• Backward: Start with full model, and sequentially deletes the feature with
least impact on the fit. 5



Shrinkage methods

• Subset methods is discrete, i.e., retains/discards variables, and tends to
exhibit high variance.

• Shrinkage methods are more continuous and do not suffer as much from
high variability.

• Basic concept: instead of finding the parameters that minimizes the RSS only,
we add a penalty term that penalizes more complex models, e.g., models with
larger coefficients or larger number of coefficients. This “shrinks” the
coefficients, in some cases, to 0.
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Ridge regression (L2 regularization)

ˆβridge = argmin
β


N∑
i=1

(yi − β0 −
p∑
j=1

βjxj)2 + λ

p∑
j=1

β2j


• λ ≥ 0 is the shrinkage parameter. The larger the λ, the greater the shrinkage.
• Also equivalent to:

ˆβridge = argmin
β

N∑
i=1

(yi − β0 −
p∑
j=1

βjxj)2

subject to
p∑
j=1

β2j ≤ t
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Ridge regression - Key details

• Intercept (β0) is not part of penalty term.
• Inputs should be scaled prior to performing ridge regression, typically by
centering to the mean and scaling to unit variance:

zj =
xj − µxj
sxj
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LASSO (L1 regularization)

ˆβLASSO = argmin
β


N∑
i=1

(yi − β0 −
p∑
j=1

βjxj)2 + λ

p∑
j=1

|βj|


• Least Absolute Shrinkage and Selection Operator
• λ ≥ 0 is the shrinkage parameter. The larger the λ, the greater the shrinkage.
• Also equivalent to:

ˆβLASSO = argmin
β

N∑
i=1

(yi − β0 −
p∑
j=1

βjxj)2

subject to
p∑
j=1

|βj| ≤ t
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LASSO regression - Key details

• Intercept (β0) is not part of penalty term.
• Inputs should be scaled prior to performing lasso regression, just as in ridge
regression.
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Subset vs ridge vs LASSO

• Consider a set of orthonormal features.
• Ridge: proportional shrinkage. No coefficients are set to zero.
• LASSO: “soft” thresholding. Translates coefficients by a factor, truncating at zero.
• Best-subset: “hard” thresholding. Drops all coefficients below a certain
threshold.
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FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |β1|+ |β2| ≤ t and β2

1 + β2
2 ≤ t2,

respectively, while the red ellipses are the contours of
the least squares error function.
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Other variants of shrinkage methods

• Elastic net penalty:

λ

α

p∑
j=1

β2j + (1− α)

p∑
j=1

|βj|


• Least angle regression
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Derived input directions

• General concept: transforms input X into a smaller subset of zm and regress
on zm

• Principal component regression:
• Transform non-orthonormal features into orthonormal directions using
Principal Component Analysis (PCA).

• Choose M directions that have the highest eigenvalues (explains the most
variance) and discards the rest.

• Will revisit at a later lecture.

13



Partial Least Squares (PLS)

• Algorithm:
1. Compute ϕ1j =< xj, y > for each j.
2. First transformed direction z1 =

∑
j ϕ1jxj, i.e., each direction is weighted by

strength of effect on y.
3. Regress y on z1 to obtain θ1, orthogonalize x1, ...xp wrt z1 via x′j = xj −

<z1,xj>
<z1,z1>z1.

4. Repeat until M ≤ p coefficients are obtained.

• Finds directions with high variance and high correlation with response.
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Extending linear methods



Preliminaries

• It is highly unlikely that the true function f(X) is linear in X.
• In some cases, linearity is a reasonable assumption, e.g., a first order Taylor
series expansion:

f(x) = f(a) + f′(a)(x− a) + f′′(a)(x− a)2
2! + f′′′(a)(x− a)3

3! + ...

• Examples where this is used in materials science - linear elasticity (Hooke’s
law), etc.

• More frequently, we perform a transformation of inputs to create a linear
basis expansion.

15



Transformation of inputs



General concept

• Express:

f(X) =
M∑
m=1

βmhm(X)

where hm is the mth transformation of X.
• This is known as a linear basis expansion in X.
• The key lies in choice of the basis functions hm.
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Examples of basis expansions

• hm(X) = X2j ,hm(X) = XiXj
• Polynomial expansion to higher-order Taylor series terms.
• No. of terms increases exponentially with degree of polynomial. For p variables,
we have O(p2) square and cross-product terms in a quadratic model. For a
degree d polynomial, we have O(pd).

• hm(X) = log(Xj), sqrt(Xj), exp(iXj): non-linear transformations in X.
• hm(X) = I(Lm ≤ Xk < Um): Piece-wise division of regions of X. E.g., cubic
splines.

• hm(X) = RBF(||X− Xm||): radial basis function, e.g., Gaussian.
• Typically, basis functions are used simply to allow a more flexible
representation of the data. The basis functions can span a very large
(sometimes infinite) set, from which a selection has to be made:

• Restriction - Truncate the choice of basis functions using some criteria.
• Selection - Choose basis functions that contribute significantly to the fit.
• Regularization - Use the whole and/or very large subset and apply
regularization techniques (e.g., ridge or LASSO) to restrict coefficients.

17



Linearization from physical laws

• Arrhenius law:

r = A exp(− EaRT) −→ log(r) = log(A)− Ea
RT

• Ising model:
H(σ) = −

∑
<i,j>

Jijσiσj − µ
∑
j
hjσj
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Compressive sensing for cluster expansions

• Cluster expansion of energy on lattice points:

H(σ) = E0 +
∑
f
Jf
∏
f
(σ)

• σ is the vector representing occupation of lattice sites,
∏
f are the cluster

basis functions, Jf are effective cluster interactions (ECIs).
• Compressive sensing: essentially a LASSO to solve for ECIs.[1]COMPRESSIVE SENSING AS A PARADIGM FOR . . . PHYSICAL REVIEW B 87, 035125 (2013)

which are represented by the black dotted lines in Fig. 3. We
see that the RMS errors for the prediction set largely follow
the same behavior as the LOOCV scores, reaching minima at
nearly identical μ values.

As expected, fitting errors for the training set (not shown
here) decrease monotonically with decreasing μ and are sig-
nificantly smaller than either the LOOCV scores or prediction
errors for the holdout set. The leveling off in both the prediction
errors and the LOOCV score at small values of μ can be
explained by noting that CSCE fits the training set perfectly
and further decrease of μ does not bring about noticeable
changes in the calculated ECI’s. We note that this behavior
is different from the short-ranged pair model in the previous
section, where decreasing μ below the optimal range caused
a rapid deterioration in the accuracy of the calculated ECI’s.
We attribute this difference to the lower level of noise in the
Ag-Pt case, so that the range of μ’s that leads to acceptable
ECI’s is much wider than at the 20–50% noise level for the
short-ranged pair model.

To compare the performance of CSCE with other es-
tablished methods, a discrete optimization (DO) scheme as
implemented in the state-of-the-art ATAT software package,21,22

was used. Note that the ATAT program is capable of employing
advanced algorithms beyond minimization of the LOOCV
score to ensure that the ground-state line is reproduced
correctly and to determine which structures should be used as
input. In order to make a straightforward comparison between
CSCE and DO and to ensure a reasonable fit construction
time for this problem, we only used the LOOCV-based DO
functionality of ATAT. Since the DO method for N = 986
clusters on a training set of a few hundred structures takes
several days to complete, averages were taken over only ten
training sets of size M (except for M = 400 when we used
42 different training sets to perform statistical analysis of the
calculated ECI’s). In order to simulate building a complicated
unknown model, we deliberately avoided applying physical
intuition (e.g., picking short-range interactions) and simply
performed the optimizations with minimal restrictions. The
maximum number of reported ECI’s was capped to M/4 for
ATAT-based DO. For CSCE, we used a fixed μ = 8 meV/atom
and computed solutions for 500 randomly chosen training sets
of M structures.

Figure 4 shows a box and whisker plot of the RMS errors
over the prediction set for CS solutions and the mean RMS
values for the DO solutions (box-and-whiskers were not used
for DO solutions due to the small number of DO fits). Each
box and whisker represents RMS values for approximately
500 different fits. We see that CSCE achieves an RMS error
value much lower (2.8 meV/atom) than LOOCV-based DO
(6.8 meV/atom). Furthermore, Fig. 4 shows that the �1 norm
of the solution increases almost linearly for the DO fit, while
it levels off for the CSCE fit, indicating that the latter is
converging towards a stable solution, while the former keeps
adding large ECI’s, a behavior suggestive of overfitting.

C. Statistical analysis of Ag-Pt ECI’s

Because CSCE is fast, thousands of fits for many different
training sets can be computed in a few minutes. The results of
all these fits can be analyzed statistically to determine which
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FIG. 4. (Color online) Results from compressive sensing and
leave-one-out cross validation for the fcc-based, Ag-Pt alloy system.
The solid line gives the root-mean-square (RMS) errors for predic-
tions made on a constant holdout set for CS(box and whisker) and
leave-one-out cross validation (squares). The dashed lines give the
�1-norm of the solution vector for both methods.

coefficients are consistently identified as contributors and to
eliminate artifacts due to a particular choice of the training
set. This functionality, the ability to gather enough data in a
reasonable amount of time to perform statistical analyses, is a
significant advantage of CSCE over (slower) DO methods that
can be used to gain insight into the probability distributions
for the cluster interactions. These distributions can be used to
quantify the uncertainty in the CSCE predictions for physical
properties that go beyond a simple LOOCV score or an RMS
prediction error. For instance, one can draw ECI’s from the
calculated distributions and generate ground state convex hulls
with statistical error bars on each structure, quantifying the
uncertainty in the predicted T = 0 K phase diagrams.

CSCE fits for 500 different fitting set choices were
computed for Ag-Pt. Most of the resulting distributions had
only one sharp peak at zero, indicating that, independently of
the choice of the training set, they were almost never selected
by CSCE and therefore should be set to zero. Several ECI’s
exhibited a unimodal distribution with nonzero mean, which
were interpreted as strongly significant nonzero interactions.
Finally, a fraction of the ECI’s showed bimodal distributions
with two peaks of comparable weight and one of the peaks
centered at zero energy. Since the latter ECI’s were selected
by CSCE with an approximately 50% probability, they belong
to the class of “marginal” interactions, which were counted as
significant only if their distribution mean was greater than one
standard deviation. To make a fair comparison between CSCE
and the DO methods implemented in the ATAT program, the
same statistical criteria for determining relevant coefficients
was used for the DO fits, even though data for only 42 fits
were available.

Figure 5 gives a comparison of the CS-determined coef-
ficients and those found by DO. The upper pane compares a
typical DO fit with a typical CSCE fit, while the lower pane
gives a comparison of statistically relevant ECI’s from both
methods. The CSCE-derived ECI’s appear to evolve towards
one specific solution as the size of the fitting set increases,
indicating convergence of the solution. Notice also that the
magnitudes of the CSCE coefficients decrease as the spatial
extent of the cluster increases and as the number of cluster

035125-9
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Piece-wise polynomials



Piecewise polynomials

h1(X) = I(X < ξ1),h2(X) = I(ξ1 ≤ X < ξ2),h3(X) = I(X ≥ ξ2)

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 5
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FIGURE 5.1. The top left panel shows a piecewise
constant function fit to some artificial data. The bro-
ken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true func-
tion, from which the data were generated with Gaus-
sian noise. The remaining two panels show piecewise
linear functions fit to the same data—the top right un-
restricted, and the lower left restricted to be continuous
at the knots. The lower right panel shows a piecewise–

Parameters:
• No. of knots
• Order of polynomial
• Continuity at knots (value, first derivative, second
derivative, etc.). For a polynomial of order N, we
usually want all derivatives < N to be continuous.

20



Cubic splines
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 5

O

O

O

O

O

O
O

O

O

O

O
O

O
O

O

O

O

O

O

O
O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O
O

O

O

O

O
O O

Discontinuous

O

O

O

O

O

O
O

O

O

O

O
O

O
O

O

O

O

O

O

O
O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O
O

O

O

O

O
O O

Continuous

O

O

O

O

O

O
O

O

O

O

O
O

O
O

O

O

O

O

O

O
O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O
O

O

O

O

O
O O

Continuous First Derivative

O

O

O

O

O

O
O

O

O

O

O
O

O
O

O

O

O

O

O

O
O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O
O

O

O

O

O
O O

Continuous Second Derivative

Piecewise Cubic Polynomials

ξ1ξ1

ξ1ξ1

ξ2ξ2

ξ2ξ2

FIGURE 5.2. A series of piecewise-cubic polynomi-
als, with increasing orders of continuity.

• Probably the most commonly used.
• Continuous 1st and 2nd derivatives.
• Natural cubic spline: polynomial is
linear beyond boundaries.

• Smoothing spline: Use
regularization to control complexity:

RSS(f, λ) =
N∑
i=1

{yi − f(xi)}2

+λ

∫
{f′′(t)}2dt
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Examples of cubic spline fitting

• Spline-based Modified Embedded Atom Method (MEAM)

E =
∑
i<j

ϕ(rij) +
∑
i
U(ni),

ni =
∑
j
ρ(rij) +

∑
i<k,j,k!=i

f(rij)f(rik)g[cos(θjik)]

where ϕ, U, ρ, f and g can be approximated by cubic splines.
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Demo: Cubic spline fitting in scipy

from __future__ import annotations

import numpy as np

## Import CubicSpline from scipy
from scipy.interpolate import CubicSpline

## x, y data for generating the spline fitting
x = np.arange(10)
y = np.sin(x)
## Fit the spline
cs = CubicSpline(x, y)
## Generate new x values
xs = np.arange(-0.5, 9.6, 0.1)
## Perform the interpolation on the new points
ys = cs(xs)
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Gaussian basis functions



Gaussian basis functions

hm(x) = exp(−k(x− xm)2)

• Gaussian functions centered at xm.
• Other similar types of functions include Lorentzian (hm(x) = 1

1+kx2 ),
Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles.
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Example: Rietveld refinement

70 R E F I N E M E N T  M E T H O D  FOR N U C L E A R  AND M A G N E T I C  S T R U C T U R E S  

and 

Rprorile = 100 x X I yi(obs) 1 
i [ - C 

Results 

Over the past year many structures, nuclear as well as 
magnetic, have been refined with the method. An ex- 
ample of a nuclear structure is CaUO4 (Loopstra & 
Rietveld, 1969). Its powder diagram (Fig.4) shows 
hardly any overlap and the structure may have been 
as successfully refined with integrated intensities. The 
reason for inclusion of this diagram, however, is the 

fact that it demonstrates the nearly perfect fit obtain- 
able on the assumptions of a Gaussian peak shape 
[equation (1)] and a quadratic relation between half- 
width and scattering angle [equation (4)]. 

The powder diagram (Fig.5) of Sr2UO5 exhibits 
severe overlap. At large angles, more than ten reflex- 
ions may contribute to a profile intensity. While the 
information content of this part of the diagram is low, 
the agreement between observed and calculated pro- 
files shows that even this amount has been used to the 
fullest extent. 

Some of the other structures are shown inTable  1 
with their R values. The large Rmagnetic values in this 
list are caused by the fact that the nuclear scattering 
generally overrides the magnetic contributions, making 
the above-described method of separating peaks [equa- 
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Figure 1: Neutron powder diffraction diagram of CaUO4

• Least squares fitting of theoretical line profile to match a measured
diffraction pattern (e.g., X-ray, neutron).[2]
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Example: Rietveld refinement, contd.

• Peak shape function:

PSF(θ) = Ω(θ)⊗ Λ(θ)⊗Ψ(θ) + b(θ)

• Ω: Instrument broadening, Λ: Wavelength dispersion, Ψ: Specimen function.
• For single phase, minimize:

Φ =
N∑
i=1

wi

Yobsi −

bi + K
m∑
j=1

Ijyj(xj)

2

• where yj(xj) is typically a pseudo-Voigt (mix of Gaussian and Lorentizan
function) function.

• Note that the background (bi) holds no useful structural information and
should be minimized in experiments.
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Wavelet and Fourier basis functions



Wavelet smoothing
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 5
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FIGURE 5.16. Some selected wavelets at different
translations and dilations for the Haar and symmlet
families. The functions have been scaled to suit the
display.

• Complete orthonormal basis
• Shrink and select toward sparse
representation.

• Able to represent both time and frequency
localization efficiently (Fourier basis can
only do frequency localization).
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Example: NMR Spectroscopy
6 BARACHE, ANTOINE, AND DEREPPE

In order to extract only the desired spectral line, one can
iterate the procedure with s (1)

1 as the new input signal. Then
the error term becomes negligible after a certain number of
iterations. Thus the first component is completely character-
ized and can be removed from the initial signal. An example
of the remarkable efficiency of this procedure is given in Fig.
4 (see also (3, 4)). The material is polyethylene and the huge
line is the CH2 peak, which completely obliterates the fine
details (top). After subtraction of the large peak (bottom),
the smaller lines become clearly identifiable. The remarkable
fact is that these small lines have not been perturbed nor
displaced by the subtraction procedure, only slightly attenu-
ated. The reason, of course, is that they live at a scale com-
pletely different from that of the CH2 peak, and the two are
therefore completely decoupled by the CWT.

6. DYNAMICAL PHASE CORRECTION

Pulsed magnetic field gradient NMR is now a standard
technique for studying both diffusive and coherent molecular
motions.

Unfortunately, the switching of large amplitude gradients
used in this method gives rise to a number of problems.
Gradient switching can induce mechanical vibration and/or
eddy currents both in the probe and in the magnet. These
effects depend on the timing and amplitude of the gradients
and therefore introduce large errors in the measurement of
diffusion coefficients. Several techniques, such as delaying
the acquisition or using shielded gradients, have been pro-
posed in order to alleviate the problem.

However, the use of a magnetic field gradient pulse nor-
mally generates a time-dependent B0 field caused by the

FIG. 4. Subtraction of a large spectral line: (a) the original spectrum,eddy current in the bore tube and the uncorrected FID or echo from polyethylene, in the vicinity of the large CH2 peak; (b) the recon-
produces spectra with major distortions. An experimental structed spectrum after subtraction of the CH2 peak.
method (1, 13) has been proposed for eliminating the prob-
lem; it consists in extracting the time behavior of the phase
from a test signal in order to correct the other signals. How- CWT is given along the n th ridge by [4.5] . Thus the phase
ever, both the production of an appropriate test signal and of the CWT along this ridge is expressed by
the extraction of the time dependence of its phase are diffi-
cult and expensive operations. We show here that the CWT F(b , an(b)) å arg[S(b , an(b))] [6.2]
can be used for removing the distortions introduced by gradi-

Å vnb / f(b) / arg[dC(b)] , [6.3]ent switching without using a test signal, thus simplifying
the procedure considerably.

where dC(b) is given in Appendix B. Then the rephasedAs shown in Section 4, the CWT may be used for ex-
signal is simplytracting the time behavior of the phase from the signal itself.

The proof of this result consists in rephasing the spectra of
s (r ) ( t) Å s( t)e0 i (F( t ,an( t ) )0arg[dC( t ) ] ) [6.4]the acquired signals.

A NMR signal detected from the n th nuclear spin can be Å ∑
l

Al( t)e i (vl0vn ) t , [6.5]
modeled by

sn( t) Å An( t)e i (vnt/f( t ) ) , [6.1] where the n th component is chosen as a reference spectral
line.

First, we treat a spectacular example where the time de-where the effect of the eddy currents lies in the time depen-
dence of the phase f. As we have seen in Section 4, the pendence of the B0 field is known. The entire spectrum of
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Figure 2: Subtraction of a large
spectral line: (top) the original
spectrum of polyethylene, (bottom)
reconstructed spectrum after
removal of CH2 peak.[3]

Applications:
• Suppression of large unwanted spectral line
(left).

• Rephasing spectrum perturbed by
time-dependent magnetic field.

• Noise filtering
• Detecting phases in a mixture
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Example: Fourier transform for analysis of extended X-ray absorp-
tion fine structure (EXAFS)

• (a) The extended edge (orange part) contains information
of atom chemical environment.

• (b) Subtract the background, convert energy to k-space
unit, and multiply the normalized intensity by k2

• (c) Fourier transform k-space information to real space
and obtain the first shell bond length.
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The End
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