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Preliminaries



Preliminaries

• We will go very deep into linear models.
• Most of you probably have seen linear models in some form, but we will start
from scratch to further illustrate key concepts such as bias and variance.

• Using linear examples, we will discuss the basic machine learning concepts
of model selection, cross-validation, and loss functions.
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Notation

• Capital letters, e.g., X denote variables.
• Lower-case letters e.g., x, denote observations.
• Dummy index j denotes different variables, e.g., Xj
• Dummy index i denotes different observations, e.g., xi
• Bolded variables are vector/matrices, e.g., y, X
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Linear regression



Simplest possible model between target and feature

Y = f(X1, X2, ..., Xp) = β0 +

p∑
j=1

βjXj

Xj can be:

• Quantitative inputs
• Transformations of quantitative inputs, e.g., log, exp, powers, etc. Basis
expansions, e.g., X2 = X21 , X3 = X31

• Interactions between variables, e.g., X1X2
• Encoding of levels of inputs
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Supervised learning

• Given a set of paired observations {xij, yi}, what are the model parameters (in
this case, the coefficients βj) that are “optimal”?

• “Optimal” is typically defined as minimization of some loss function (also
known as cost function) that measures the error of the model.
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Least squares regression

Consider the simple case of
Y = β0 + β1X1

In least squares regression, the loss function is defined as the sum squared error
given the N observations:

L(Y, f̂(X)) =
N∑
i=1

(yi − f(xi))2

=
N∑
i=1

(yi − β0 − β1xi1)2

7



What are the optimal parameters β0 and β1?

∂L
∂β0

=
N∑
i=1

2(yi − β0 − β1xi1)(−1) = 0

=⇒
N∑
i=1

yi = Nβ0 +
N∑
i=1

β1xi1

=⇒ β0 = ȳ− β1x̄1
∂L
∂β1

=
N∑
i=1

2(yi − β0 − β1xi1)(−xi1) = 0

=⇒ β1 =

∑N
i=1 xi1yi − Nx̄1ȳ∑N
i=1 x2i1 − Nx̄12
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Reformulating the general multiple linear regression as a vector
equation...

Considering N observations of

yi = β0 + β1xi1 ++β2xi2 + ...+ βpxip
Let

y =


y1
y2
...

yn

 ,β =


β0
β1
...

βp

 , X =


1 x11 x12 ... x1p
1 x21 x22 ... x2p
...
1 xN1 xN2 ... xNp

 ,

So,
y = Xβ

Note that y is a N× 1 vector, β is a (p+ 1)× 1 vector, and X is a N× (p+ 1) matrix.
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Reformulating the general multiple linear regression as a vector
equation...

L = RSS = (y− Xβ)T(y− Xβ)

Assuming (for the moment) that X has full column rank, and hence XTX is positive
definite, It can be shown using the same principles that the following unique
solution for β is:

β̂ = (XTX)−1XTy
ŷ = Xβ̂ = X(XTX)−1XTy
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Graphic representation of MLR with two dependent variables

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.1. Linear least squares fitting with
X ∈ IR2. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y .

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.2. The N-dimensional geometry of least
squares regression with two predictors. The outcome
vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection
ŷ represents the vector of the least squares predictions

Figure 1: MLR minimizes sum square of residuals. The projection ŷ represents the vector
of the least squares predictions onto the hyperplane spanned by the input vectors x1 and
x2. [1].
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Validity of least squares criterion

• Observations are independently drawn at random.
• Variance of y is constant given by σ2.

var(β̂) = (XTX)−1σ2

• and σ is estimated using:

σ2 =
1

N− p− 1

N∑
i=1

(yi − ŷi)2
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Example materials data

• Target: Bulk modulus of elements (from Materials
Project)

• Candidate features:
• Melting point (MP)
• Boiling point (MP)
• Atomic number (Z)
• Electronegativity (χ)
• Atomic radius (r)

• Question: Why these features?
• We will also add some transformations of these
inputs, i.e., the square and square root of the
electronegativity and the atomic radius.
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Using pandas for easy data manipulation

from __future__ import annotations

import pandas as pd

# Read in data and set first column as index.
data = pd.read_csv("element_data.csv", index_col=0)
# Generate transformations as additional columns.
data["X^2"] = data["X"] ** 2
data["sqrt(X)"] = data["X"] ** 0.5
data["r^2"] = data["r"] ** 2
data["sqrt(r)"] = data["r"] ** 0.5
# Define our features, which is all the columns
# excluding K, which is the target.
features = [c for c in data.columns if c != "K"]
x = data[features]
y = data["K"]
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MLR in scikit-learn

from __future__ import annotations

from sklearn import linear_model

reg = linear_model.LinearRegression()
reg.fit(x, y)
print(reg.coef_)
print(reg.intercept_)

• Note that x should contain the features only; there is no need to add a 1
column for the intercept. By default, the parameter fit_intercept in
sklearn.linear_model.LinearRegression is True. You can set it to
False to do a MLR without intercept.

• Documentation: link.
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Hypothesis Testing for Coefficients

• To derive insights into a model, we often want to know which among the
input parameters are the most relevant to the target.

• Under assumptions of the errors in y follow a Gaussian distribution N(0, σ2),
the errors in β̂ also have a Gaussian distribution N(β, (XTX)−1σ2)

• Hypothesis testing can be carried out for whether a particular βj is 0 using
the following test statistic:

tj =
β̂j

σ
√vj

where vj is the jth diagonal element of (XTX)−1. tj has a t distribution with
N− p− 1 degrees of freedom (dof).
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Hypothesis Testing for Groups of Coefficients

• More often, we want to test groups of coefficient for significance. E.g., to the k
levels of a categorical variable.

• We will use the following F statistic:

F = (RSS0 − RSS1)/(p1 − p0)
RSS1/(N− p1 − 1)

where RSS0 is the RSS of the larger model with p0 + 1 parameters and RSS1
is the RSS of the smaller model with p1 + 1 parameters with p0 − p1
parameters set to zero. The F statistic has a distribution of Fp1−p0,N−p1−1.
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Gauss-Markov Theorem

• Consider the estimator θ̂ for a variable θ.

MSE = E(θ̂ − θ)2

= var(θ̂) + [E(θ̂)− θ]2

• The MSE can be broken down into the variance of the estimate itself and the
square of the bias.

Gauss-Markov Theorem
The least squares estimator has the smallest variance among all linear
unbiased estimators.

• However, there can be estimators that are biased with smaller MSE.
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Model selection



Model performance

• We will take a brief digression into model assessment and selection before
continuing to other linear methods.

• Model performance is related to its performance on independent test data,
i.e., one cannot simply report a model’s performance on training data alone.

• Note that this section is deliberately limited to high-level concepts that are
universally applicable to many different models.
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Typical measures of model performance

• Mean squared error (MSE):

L(Y, f̂(X)) = 1
N

N∑
i=1

(yi − f(xi))2

• Mean absolute error (MAE):

L(Y, f̂(X)) = 1
N

N∑
i=1

|yi − f(xi)|

• Test error: L over independent test set.
• Training error: L over training set.
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Training and test errors with model complexity

• Model complexity increases as the number of parameters increases (e.g.,
number of independent variables in MLR).

• Training errors always decrease with increasing model complexity.
• However, test errors do not have a monotonic relationship with model
complexity. Test errors are high when model complexity is too low
(underfitting) or too high (overfitting).

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.1. Behavior of test sample and training
sample error as the model complexity is varied. The
light blue curves show the training error err, while the
light red curves show the conditional test error ErrT
for 100 training sets of size 50 each, as the model com-
plexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].
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Under-fitting versus over-fitting

Figure 2: Source: Mathworks

22



Training, validation and test data

• Model selection: estimating the performance of different models in order to
choose the best one.

• Model assessment: having chosen a final model, estimating its prediction
error (generalization error) on new data.

• In a data-rich situation, divide data into three parts:
• Training set: For training the model.
• Validation set: For estimating prediction error to select the model.
• Test set: For assessing the generalization error of the final model.

• Typical training:validation:test splits are 50:25:25 or 80:10:10, or 90:5:5.
• Note that at no point in the model fitting and selection process should the
test set be “seen”.
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K-fold cross validation (CV)

• Simplest and most widely used approach for model validation.
• Data set is split into K buckets (usually by random).
• Typical values of K is 5 or 10. K = N is known as “leave-one-out” CV.

Train Train Validate Train Train
• CV score is computed on the validate data set after training on the train data:

CV(̂f−k(i), α) = 1
Nk(i)

Nk(i)∑
i=1

L(yi, f̂−k(i)(xi, α))

• assuming the kth data bucket has Nk(i) data points and f̂−k(i) refers to the
model fitted with the kth data left out (N− Nk(i) data in fitting).
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CV in scikit-learn

from __future__ import annotations

from sklearn.model_selection import KFold, cross_validate

kfold = KFold(n_splits=5, shuffle=True, random_state=42)
cv_results = cross_validate(ridge, z, y, cv=kfold)

• Note that we have customized the KFold object passed to the
cross_validate method. The reason is that our element data is sorted by
default, i.e., non-random. So we want to perform shuffling prior to doing the
splits.

• Documentation: link.
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Model Fitting Procedure

Train-test split,
e.g., 80:20

Fit scaler / trans-
forms on training
data (if needed)

CV or train/val using
training data only

Select best param. set
using CV / val scores.

Refit using best param.
set and training data

Evaluate using test set

Note: For simple MLR, there are no parameters or multiple models to choose
from. We will use this procedure when we look at other models where there are
parameters that need to be optimized. 26



Characteristics of the example materials dataset

• Before proceeding further, let us try to tease out some aspects of the dataset.
• Quite clearly, there are correlations between some sets of variables.
• In other words, the input features are non-orthonormal with each other.
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Loss functions for regression

• We have thus far focused on the squared error loss L(y, f(x)) = (y− f(x))2

• Another common loss function is the absolute error L(y, f(x)) = |y− f(x)|
• MSE penalizes outliers with large observed residuals severely, and hence is
less robust in data with long-tailed distributions.

• MAE is more robust against outliers.
• Other criteria include the Huber loss, which is also more robust against
outliers:

L(y, f(x)) =
{

(y− f(x))2 |y− f(x)| ≤ δ

2δ|y− f(x)| − δ2 otherwise
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The End
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