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What is Data Science?

Data science is a multi-disciplinary field that uses scientific

methods, processes, algorithms and systems to extract knowledge

and insights from structured and unstructured data.
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What is Data Science?

3



The Data Age
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Growth in Materials Data (as of Jan 1 2020)

Figure 1: ICSD: ∼200,000 crystals

Figure 2: COD: ∼400,000 crystals

Figure 3: Protein data bank

Figure 4: Cambridge structural database

(small-molecule organic crystal structures) 5



But Quantity and Quality Lags Many Other Fields

Figure 5: One of the most comprehensive

handbooks on materials data: Density, thermal

and electrical conductivity, melting and boiling

points, etc., but O(100) binaries and limited

ternaries...

Figure 6: ∼1000+ superconductors (many

minor composition modifications). Ref:

https://supercon.nims.go.jp/
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First Principles Materials Computations
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Electronic structure calculations are today reliable and reasonably

accurate...

• (left) Modern

electronic structure

codes give relatively

consistent equations

of state.

• (right, clockwise

from top left) Good

predictions can be

obtained for phase

stability,[1] formation

energies, surface

energies,[2] and

elastic constants[3].
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Software frameworks for high-throughput computational materials

science

• Materials Project (https://materialsproject.org)[4]

• Python Materials Genomics or pymatgen (https://pymatgen.org)[5]

• Custodian (https://materialsproject.github.io/custodian/)

• FireWorks [6]

• Atomic Simulation Environment (https://wiki.fysik.dtu.dk/ase)

• AFLOW (http://aflowlib.org)[7]

• AiiDa (http://www.aiida.net)
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Computation + Automation → Large databases
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Google for Materials

The Materials Project is an open science project to make the computed

properties of all known inorganic materials publicly available to all researchers to

accelerate materials innovation.
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Google for Materials
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Materials Application Programming Interface (API)[8]

• An open platform for accessing Materials Project data based on REpresentational

State Transfer (REST) principles.

• Flexible and scalable to cater to large number of users, with different access

privileges.

• Simple to use and code agnostic.

• Requires an API key, available at:

https://www.materialsproject.org/dashboard

• Documentation: https://api.materialsproject.org/docs

13

https://www.materialsproject.org/dashboard
https://api.materialsproject.org/docs


RESTful API

A REST API maps a URL to a resource.

Example

GET https://api.dropbox.com/1/account/info

Returns information about a user’s account.

Methods: GET, POST, PUT, DELETE, etc.

Response: Usually JSON or XML or both

14



Materials API Example

URL

https://api.materialsproject.org/summary/?formula=Fe2O3& fields=formation energy per atom

Example response:

{

"data":[

{"_id":"61a2dcaa2c86325a0218b5ef","formation_energy_per_atom":-1.6299189062500006},

{"_id":"61a2dcb52c86325a021af9bd","formation_energy_per_atom":-1.4175868379999996},

...

],

"meta":{

"api_version":"0.48.0",

"time_stamp":"2022-09-19T13:17:11.321756",

"total_doc":26,

"max_limit":1000,

"default_fields":["material_id"]

}

}

• Intuitive response format.

• Machine-readable (JSON parsers

available for most programming

languages).

• Metadata provides provenance for

tracking.
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Types of Materials Data

Qualitative data

• Nominal measurement.

• E.g., Metal/Insulator,

Stable/Unstable.

• No rank or order.

Ranked data

• Ordinal measurement

(ordered).

• E.g., Insulator/

semiconductor/

conductor.

• Does not indicate

distance between ranks.

Quantitative Data

• Interval/ratio

measurement (equal

intervals and true 0).

• E.g., melting point,

elastic constant,

electrical/ionic

conductivity.

• Considerable

information and

permits meaningful

arithmetic operations. 16



What is Machine Learning?
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Nobel Prizes in Chemistry and Physics 2024
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Materials ML Workflow

Identify Purpose 
and Target

Data Generation or 
Collection Featurization Training Application

Active learning

Domain knowledge
- Is target learnable?
- Is target ambiguous?

Data Sources

Existing DIY

Elemental Features Structural Features

Classification
Decision tree
Logistic regression
...
Regression
GPR
KRR
Multi-linear
Random forest
SVR
Neural networks
Graph models
...

Supervised
- Cross-validation
- Hyper-parameter optimization

Materials Science Specific
ænet
Automatminer
CGCNN
DeepChem
MEGNet
PROPhet
SchnetPack
TensorMol
...
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Where is ML valuable in Materials Science?

Too many to compute Too big to compute Too complex to understand.
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Data History of the Materials Project

21



Surrogate models for “instant” property predictions

Property = f (Composition, Structure)

• The material property, e.g., energetic (formation, energy above hull, reaction,

etc.), electronic (band gaps, DOS), mechanical, functional (e.g., ionic

conductivity) is called the “target”.

• Composition and Structure are called the “descriptors” or “features”.

• Examples of compositonal features: stoichiometric attributes, e.g., # and ratio of

elements; elemental properties, e.g., mean, range, min, max of atomic number,

electronegativity, row, group, radii, # of valence electrons, etc.

• Examples of structural features: crystal/molecular symmetry, lattice parameters,

atomic coordinates, connectivity / bonding between atoms.
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Compositional features

Figure 7: Meredig et

al. (2014) Phys. Rev.

B89, 094104

Figure 8: Jha et al. (2018) Sci. Rep., 8(1), 17593., Zheng, X., et al

(2018). Chem. Sci., 9(44), 8426-8432.
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Structural features

Figure 9: Property-labelled

materials fragments + gradient

boosting decision tree.[9]

Figure 10: Crystal graph +

graph convolutional neural

networks

Figure 11: Smooth overlap of

atom positions (SOAP).[10]
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Example: Graph-based representations

Figure 12: MatErials Graph Networks (MEGNet).[11]
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MEGNet Performance Benchmarks

Property MEGNet SchNet CGCNN

Formation energy Ef (meV/atom) 28 (60,000) 35 39 (28,046)

Band gap Eg (eV) 0.330 (36,720) - 0.388 (16,485)

log10 KVRH (GPa) 0.050 (4,664) - 0.054 (2,041)

log10 GVRH (GPa) 0.079 (4,664) - 0.087 (2,041)

Metal classifier 78.9% (55,391) - 80% (28,046)

Non-metal classifier 90.6% (55,391) - 95% (28,046)

Table 1: Materials Project Crystals. Brackets indicate number of data points.
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Scale Challenge in Materials Science
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ML Interatomic Potentials as a solution to the scale challenge

• Examples: Neural Network Potential (NNP)[12], Gaussian

Approximation Potential (GAP)[13], moment tensor potential

(MTP)[14], spectral neighbor analysis potential,[15], atomic

cluster expansion[16], etc.

• ML models: Linear regression, Gaussian kernels, neural

networks, etc.
• Local environment descriptors:

G
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e
−η(Rij−Rs )

2
· fc (Rij ),

G
atom,ang
i = 21−ζ
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(1 + λ cos θijk )
ζ · e−η′(R2

ij+R2
ik+R2
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Automatable workflows for MLIP Construction

Pymatgen

Fireworks + VASP

DFT static
Dataset

Elastic deformation Distorted
structures

Surface generation Surface 
structures

Vacancy + AIMD Trajectory
snapshots

(low T, high T) AIMD Trajectory
snapshots

Crystal
structure

property fitting
E
e

e.g. elastic, phonon

· · ·
energy weights

degrees of freedom · · ·
cutoff radius

expansion width

S1

S2

Sn

· · ·

rc

atomic descriptors

local
environment

sites

· · · · · ·

X1(r1j … r1n)
X2(r2k … r2m)

Xn(rnj … rnm)

machine learning
Y =f(X;!)

Y (energy, force, stress)

DFT properties

grid search
evolutionary algorithm

Figure 13: Automatic workflow for ML-IAP construction and performance benchmarks.[17]
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Example: Ni-Mo

Figure 14: MLIP results on Ni-Mo. (left) Ni-Mo phase diagram. (right) Stress-strain curves as

a function of grain size[17]
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Universal MLIPs

Figure 15: Materials 3-body Graph Network (M3GNet), the first whole periodic table

MLIP.[18]

31



Modeling complex relationships

Figure 16: ImageNet (https://www.image-net.org/)
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Example: Coordination environment from X-ray Absorption Spec-

tra

Figure 17: Random Forest Coordination Environment Classification[19]
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Other examples

Figure 18: X-ray diffraction data classification with CNNs[20]
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The End
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