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Preliminaries

@ Neural networks/deep learning has gotten a lot of hype in recent years.

@ In many areas, they have outperformed many traditional ML methodologies.
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_ Neual Networks |
Artificial Neural Network

@ An artificial neural network (ANN) is a learning algorithm that is (very) loosely based on
the structure of the brain.

e Somewhat vaguely, you will also hear the terms “multi-layer perceptron” (MLP) used in
place of ANN.
Universal Approximation Theorem[1]

A feed-forward network with a single hidden layer containing a finite number of neurons can
approximate continuous functions under mild assumptions on the activation function.
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Neuron

Xo

X1

Ym = o(agm + o] X)

@ Output of each neuron is a linear function of the inputs.

@ In hidden layers, the output is passed through an activation function o.

e Common choices of o include the rectified linear unit (RELU), sigmoid function, softplus,
etc.
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Activation Functions
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Fitting a Neural Network

@ Model weights (« in the linear functions) are fitted by back-propogation, basically a form
of gradient descent.

@ Loss functions: squared error for regression, squared error or cross entropy for
classification.

e To avoid overfitting, regularization (similar to ridge regression) is typically applied. E.g.,

weight decay:
J= Z o?
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Parameter Decisions for Neural Networks

@ Number of hidden units and layers: generally error on the side of having too many hidden
units than too few - flexibility is needed to capture non-linearities in the data.

@ Extra weights can be shrunk to zero with appropriate regularization.

@ Learning rate is a key parameter in fitting ANNs as well as other models. The learning
rate controls the rate of gradient descent. A high learning rate reduces training time, but
also decreases accuracy. State-of-the-art is to use an adaptive learning rate.

@ The error function is non-convex and contains multiple minima, i.e., final solution
obtained depends on initial weights. Typical approach is to start with a number of
random starting configurations and choose solution with lowest penalized error.

o Alternative is to average predictions over a number of ANN, i.e., ensemble models.
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Software packages for Neural Networks

@ Scikit-learn has a basic implementation of a multi-layer perceptron. For this course, we
will use this to avoid overloading students with different software packages.

@ However, you should be aware that if you are into serious work with ANNs, alternative
software are available that offer more features and efficiency. Note that these packages
are not limited to ANNs, but ANNSs are the most common use case.

e Tensorflow. Open-source package by Google. Very powerful and efficient, but a very steep
learning curve. Highly recommend that you use the Keras package (already integrated into
TF2) which provides a high level API to it similar to scikit-learn in some ways.

e Pytorch. Open-source package by Facebook. Equally powerful as TF but also steep learning
curve.
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https://www.tensorflow.org/
https://pytorch.org/

_ Neual Networks |
ANNs in Scikit-learn and TF2.0

from sklearn.neural_network import MLPRegressor

nn = MLPRegressor(

hidden_layer_sizes=(5, 3), alpha=le-4, max_iter=200, learning_rate_init=0.01
)
nn.fit(x, y_reg)

# Equivalent Tensorflow 2.0

from tensorflow.keras import Model, Input
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam

x_in = Input(shape=(x.shapel[1],))

x_h1 = Dense(5, activation="relu")(x_in)

x_h2 = Dense(3, activation="relu")(x_h1)

x_out = Dense(1) (x_h2)

model = Model(inputs=x_in, outputs=x_out)

opt = Adam(learning_rate=0.01)
model.compile(optimizer=opt, loss="mse"
model.fit(x, y_reg, epochs=200, batch_size=200)
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-
Beyond the Feedforward Neural Network

@ ANNs can be an entire course in itself. Here, we cover some basic variations.

Convolutional NNs Uses covolutional operations to achieve translational invariance.
Especially important in image processing applications. In modeling crystals
with periodic boundary conditions, this can also be a useful feature.

Recurrent NNs Connections between nodes form a directed graph along a temporal
sequence. Exhibits temporal dynamic behavior and can handle variable
length sequences of inputs. Applications: handwriting recognition or speech
recognition.
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Example Application: NN for interatomic potentials

o Atom-centered symmetry functions (ACSF)[2] to represent the atomic local environments.
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where Rj; is the distance between atom i and neighbor j; 7 is the width of the Gaussian;

Rs is the position shift over all neighboring atoms; { controls the angular resolution.
fc(Rjj) is a cutoff function.

o Fully connected ANNs describe the PES with respect to ACSFs.[3]

wd 8II|as been developed for Si, TiO,, water, metal orgamc frameworks, ZnO, Li;PO,, etc. .



Example Application: NNP for Si
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Figure: Left: Schematic of NNP architecture. Right: Comparison of radial distribution functions from
MD simulations using various interatomic potentials for Si.[4]
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___Avplcations]
Example Application: NNP-computed
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___Avplcations]
Example application: ANNs to predict crystal stability
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Figure: ANNs predict formation energies of garnets and perovskite crystals from Pauling
electronegativity and ionic radii.[6]
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Example application: CNNs for determination of crystal symmetry from
electron diffraction

Input Image Convolution Layer Pooling Layer

Figure: CNNs to determine crystal symmetry from electron diffraction patterns with > 90% accuracy.[7]
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