Generalized Additive Models and Trees

Shyue Ping Ong

University of California, San Diego

Fall 2023

NANOx81 Fall 2023

Overview

© Preliminaries

© Generalized Additive Models

© Trees

@ Ensemble learning
@ Boosting
@ Loss functions and robustness
@ Bagging and Random Forests

NANOx81 Fall 2023

Preliminaries

@ We have covered two broad categories of methods for regression - the highly rigid linear
methods and the very flexible local methods such as kNN.

@ There exist an entire spectrum of methods that assuming some structured form for the
unknown regression function in between these two extremes.

NANOx81 Fall 2023

_ Generalized Additive Modes |
Generalized Additive Models

@ A generalized additive model has the form:

P
E[Y X1, Xay o, Xpl = a4+ > £(X))
j=1
o If f; are expanded in terms of basis functions, this reduces to a least squares fit.

@ For generalized additive models, we fit each function using a scatterplot smoother, e.g.,
cubic spline or kernel smoother.

@ Penalized residual sum of squares is given as:

N
PRSSzZ Yi—a—

P
i=1 =

2
P
500 |+ [()
1 j=1

@ First term is our standard sum squared error, and the right term is penalizes
discontinuities (recall section on smoothing sE)Iines).
NANOx81 all 2023

Fitting generalized additive models

@ Each function f; is a cubic spline of component X;.

@ To obtain unique solution, we impose a further convention that the functions average to
zero over the data, i.e., SN | fi(x;) = OVj

o Backfitting algorithm:

Q Initialize & = % Zfil y,',fj =0.
@ Cycle through 1,2, ...p,1,2,....p

1

i «— S|{i—a—=> hla)
kA
1 N
i -5 > fi(xi)

1

o Conceptually, fitting a cubic smoothing spline S; to the residual y; — & — Zk# fk(x,-k) for

each f;, and iterate until all ﬁ-s stabilize.

NANOx81 Fall 2023

5

Extensions of Generalized Additive Models

@ Note that we are not limited to cubic splines. E.g, local polynomial and kernel methods,
linear regression, and surface smoothers etc. can be used with the appropriate choice of
smoother 5;.

@ GAMs can be used for classification as well, using the logit link function. For example, for
binary classification:

og PY=1X)
P(Y = 0/X) 1—-P(Y =1]X

(X))
1

P(Y =1X) +”
) T4

J

Very commonly used in medical research: outcomes encoded as 0 or 1 (e.g.,
death/relapse of disease).

NANOx81 Fall 2023 6

Tree-based methods

e Partition feature space into regions (e.g., rectangles
for 2 features case), and simple model (e.g.,
constant) fitted into each rectangle.

o Classification And Regression Trees (CART)

FIX) = cml{(X1,X2) € Rm}

@ Main question: How to decide on
partitions/topology?

NANOx81 Fall 2023

=

X1

X1<ty

Xo JtoXy < t3

o <t4
Ry Rz R3

Ry

X2

ta

Regression tree fitting

@ For CART, it is clear that each region should just be given by the average of the
observations y; in that region to minimize sum of squares.

@ Best partition is usually not computationally tractable.

@ Greedy algorithm: Start with all data, choose splitting variable X; and split point s such
that:

:)2 2
min Yo i—al+ Y. (-«
X €R1(Xj,s) X €Ra(X;,$)
@ For each Xj, splitting point s can be found quickly via scanning of the variables.

@ This process is repeated for each region to grow the tree.

@ Choice of tree size determines complexity of model - too large a tree results in overfitting,
too small results in underfitting.

NANOx81 Fall 2023 8

|
Cost-Complexity Tree Pruning

@ Generate the tree until a minimum node size is achieved.

@ Note: perfect performance on training data can always be obtained with an arbitrarily
large tree, e.g., when the final ‘leaf’ nodes each contain only one training observation.

@ Number of samples in a node is therefore an indicator of tree complexity.
o Let subtree T C Tp be any tree that can be obtained by pruning Tp.
o Cost-complexity criterion:

Tl

CG(T)=)_ > (i—c)?+alT|

m=1 x;€ERm,

e Find the subtree T, that minimizes C,(T). « controls complexity. Large « results in
smaller tree.

@ Weakest link pruning: successively collapse each node that produces the smallest increase
: ~)2
In Zx,-eRm(}/i — Cm)”.

NANOx81 Fall 2023 9

Classification Trees

@ Instead of squared error, we need to use alternative node impurity measures:
Misclassification error 1/Np > icr 1(yi # k(m)) =1 — pmi(m)
Gini index Zkik, Pk Prak!
Cross-entropy — Zszl Pk 10g Pk

0.2 0.3 0.4 0.5
1

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

NANOx81 Fall 2023

Miscellaneous Issues with Trees

Trees can be highly interpretable.
Instability: small data changes can lead to very different splits.

Lack of smoothness

For some categorical problems, a misclassification in one category is more serious than
another, e.g., it is better to have a false positive for a disease than a false negative. This
can be handled by weighting the loss functions appropriately.

NANOx81 Fall 2023 11

Example: Metal-insulator classification

@ A similar problem is in Lab 2.

@ We will only select a smaller subset of elemental properties to construct our decision tree

with. Namely, 'AtomicRadius’, 'AtomicWeight', 'Column’, 'Electronegativity’, 'Row’.

These properties are available for most elements and we avoid obviously correlated
features, e.g., AtomicRadius and AtomicVolume.

NANOx81 Fall 2023

12

Decision Tree Regressor and Classifier in scikit-learn

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.tree import export_text

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1)

decision_tree
decision_tree

DecisionTreeClassifier(criterion="entropy", random_state=0, max_depth=5)
decision_tree.fit(x_train, y_train)

train_accuracy = decision_tree.score(x_train, y_train)

test_accuracy = decision_tree.score(x_test, y_test)

r = export_text(decision_tree, feature_names=list(x.columns))

print("Train accuracy = %.3f; test accuracy: %.3f" 7 (train_accuracy, test_accuracy))

print(r)

decision_tree
decision_tree

DecisionTreeRegressor(criterion="mse", random_state=0, max_depth=10)
decision_tree.fit(x_train, y_train)

y_pred = decision_tree.predict(x_test)

NANOx81

Fall 2023

13

Classification accuracy

0925 | — Train

Test
0.900

0.875

accuracy
o o
o 2]
N o
o =]

0.800
0.775

0.750

25 5.0 7.5 10.0 12.5 15.0 17.5
param_max_depth

@ Quite clearly, we cannot do much better than a ~ 82% accuracy (test misclassification
rate of about 18%) with a tree-depth of around 15.

@ Also, the training and test errors diverge significantly after a depth of around 8, which

indicates overfitting.

NANOx81 Fall 2023

e
Interpreting the tree

@ A 8-deep tree is not very easy to read. Here, we will use cost-complexity pruning with a

parameter o = 0.01 to prune the tree. The resulting tree has an accuracy of around 74%.
Let's see how the decision is being made at the first few levels.

NANOx81

ElectronegativityMean <= 1.983
entropy = 0.995
samples = 84816
value = [39037, 45779]

TrV

Wse

SecondlonizationEnergyMean <= 19.366

entropy = 0.643
samples = 24631
value = [20603, 4026]

SecondlonizationEnergyMean <= 26 .962
entropy = 0.889
samples = 60185
value = [18432,41753]

S

entropy = 0.47
samples = 19662
value = [17688, 1974]

entropy = 0.978
samples = 4969
value = [2917, 2052]

/

entropy = 0.985
samples = 24156

ColumnMean <= 11.712

value = [10311, 13845]

entropy =0.77
samples = 36029
value = [8121, 27908]

/

N

entropy = 0.992
samples = 10839
value = [5973, 4866]

entropy = 0.911
samples = 13317
value = [4338, 8979]

Fall 2023

15

Interpreting the tree, contd.

1. 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

|--- ElectronegativityMean <= 2.03
|--- ColumnMin <= 2.50
| |--- ElectronegativityMax <= 5.09
| | |--- class: 0
| |--- ElectronegativityMax > 5.09
I | I---class: 1
|--- ColumnMin > 2.50
| |--- ColumnMax <= 44.50
| | |--- class: 0
Y | |--- ColumnMax > 44.50
|

|
|
|
|
|
|
|
|
|
Nd_ Pm Sm Eu 64 T m_“ Esmrm mﬂ mmmh.“m | | |--- class: 0
© ‘%"ﬁ? B }K“ B m "o G |--- ElectronegativityMean > 2.03
R Son e 8 e | |--- AtomicRadiusMean <= 0.98
|
|
|
|
|
|
|
|
|

DN ASUT COVACT POSTER PRNT MAGE REMOVEADS LESSONPLANS DSCORD | |--- AtomicWeightMean <= 22.98
| | |--- class: 1

| |--- AtomicWeightMean > 22.98
| | |--- class: 1

|--- AtomicRadiusMean > 0.98

©2017 MICHAELDAYAH VINYLBANNERS PRINTED BY PRINTASTIC

@ Compounds with mean x < 2.03 are mostly classified

as metals. | 1--- ColumnMax <= 31.00
. p | | |--- class: 0

@ Compounds with mean x > 2.03 are classified as | === ColummMax > 31.00
insulators, i.e., mostly ionic compounds containing I 1 I---class: 1

chalcogenides and halides with high x.

NANOx81 Fall 2023

Feature importance

AtomicRadiusMean
AtomicRadiusMin
AtomicRadiusMax |

AtomicWeightMean I

AtomicWeightMin I

@ Another way of interpreting trees is using Nomceighva |

the feature importance. coumnvean [
. . ColumnMin
@ The importance of a feature is the a
——

(normalized) total reduction of the S~
criterion brought by that feature. CRnam— |
ElectronegativityMax
RowMean
RowMin

RowMax

0.0 0.1 0.2 03 04 05 0.6
Feature importance

NANOx81 Fall 2023 17

Receiver Operating Characteristic (ROC) Curve

TPR

FPR

@ Plot of the TPR (sensitivity) vs FPR (1-selectivity).
@ y = x line denotes random guessing (TPR = FPR).
@ The greater the area under curve (AUC), better the

performance.

NANOx81

TP TP
P T TP+FN
FP_ FP
N~ TN+FP

Fall 2023

ROC curve

/
, %
/
/
5 /
08 f i -4
/
/
/
/
/
/ /
/ /
¢

o
g
BN
\

True positive rate
——

°
2
—— ——

~— d=2,AUC=0771
d=4,AUC = 0811
—— d=8,AUC =0.853
—— d=16,AUC = 0.860
“— d=32,AUC = 0.826
— Ideal
- Random guess

0.0

0.4 06 08 10
False positive rate

18

-
Multivariate Adaptive Regression Splines (MARS)

o Essentially a modification of CART to use step-wise linear regression.
@ MARS uses piece-wise linear basis functions:

(x—t) . x—1t , X >t
7o , otherwise
(tox),=d tx X <t

710 , otherwise

@ Implementation available in the py-earth package.

NANOx81 Fall 2023

https://contrib.scikit-learn.org/py-earth/index.html

Ensemble learning

@ So far, we have covered the basics of using a single model (linear, kernel, tree) to perform
an ML prediction.

@ In ensemble learning, we use multiple models and average the results to improve
prediction performance.

@ Advantage: lower variance and in many cases, dramatically improved prediction
performance.

@ Disadvantage: some of the interpretability is lost in the process.

@ Here, we will cover two of the most popular ensemble learning approaches - boosting and
bagging.

@ While ensemble learning can be applied to any of the previous ML methods, we will focus
here on their application to decision trees.

NANOx81 Fall 2023 20

L~~~ "
Boosting

One of the most successful ML approaches in the past few decades.

Concept: combine many "weak” learners in a "committee”.

Can be used for either classification or regression.

Weak classifier: One whose error rate is slightly better than random guessing.

e 6 6 o o

Apply weak classifier to repeatedly modified versions of data to produce a sequence of
weak classifiers.

Predictions from sequence are combined using weighted majority vote:

M
G(x) = sign (Z Qm Gm(x)>
m=1

Weights a, are computed by boosting algorithm and is the contribution of each weak
learner Gp(x).

e While G(x) can be any classifier, we will focus here on using decision trees as the base
nanoxGlassifier. Fall 2023

21

U °-o-"&
AdaBoost.M1 Algorithm (Classification)

© Initialize observation weights as w; = 1/N.
Q@ Form=1to M:
@ Fit classifier Gp,(x) to training data using weights w;.

— Z, Wil (yi7 Gm(xi))
@ Compute errp, = #

1— errm

© Compute oy, = log =
O Set w; = w;explaml (y, 75 Gm(x:))], i =1,2,...N. Conceptually, increase weights in step m
for observations that are misclassified in step m — 1.

© Output G(x) = sign <Z,A::1 am Gm(x))

Original data set, D, Update weights, D, Update weights, D,

g oo & = - #
- -+ - .
b & N Combined classifier
- + - +
3 +
=HE
Trained classifier Trained classifier Trained classifier = +
e S B !
= @) GSD+ -
OYF - - s
+ + +
& + = + -
+ -

NANOx81 Fall 2023

AdaBoost in scikit-learn

from sklearn.ensemble import AdaBoostClassifier
X_train, x_test, y_train, y_test = train_test_split(x, y_class, test_size=0.2)

decision_tree = AdaBoostClassifier(
DecisionTreeClassifier(criterion="entropy", random_state=0, max_depth=3),
n_estimators=20,

)

decision_tree = decision_tree.fit(x_train, y_train)

train_accuracy = decision_tree.score(x_train, y_train)

test_accuracy = decision_tree.score(x_test, y_test)

NANOx81 Fall 2023

23

L~~~ "
Gradient Boosting

Prediction (Iteration 1)

Residuals vs. x (Iteration 1)

m E]
I A o
b Eome
o N
0 20 40 0 20 40
Prediction (Iteration 2) Residuals vs. x (Iteration 2)
-
Mo [
N
“t o aten
b)
o 20 O 0 20 40
Prediction (Iteration 3) Residuals vs. x (Iteration 3)
-3
T N
3 ot
- P B

0 2)

Figure: Source: Gradient
Boosting from Scratch

NANOx81

@ We can think of the algorithm in Slide 22 as essentially a
forward stage-wise fit of an additive model
f(x) = ZAm/Izl amGm(x) (refer to [1] for details).

@ Greedy approach in that it seeks to maximally reduce the loss
at each step, i.e., steepest descent, by adjusting the weights
iteratively.

@ In contrast, gradient boosting attempts to fit a new learner
to the residuals of the errors from the previous step.

Fall 2023 24

https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d
https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d

L~~~ "
Gradient Boosting in Scikit-Learn

from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

model = GradientBoostingClassifier(n_estimators=50)
model.fit(x, y_class)
model .predict (x)

model = GradientBoostingRegressor(n_estimators=50)

model.fit(x, y_reg)
model.predict (x)

NANOx81 Fall 2023

25

Loss functions for regression

We have thus far focused on the squared error loss L(y, f(x)) = (y — f(x))?

Another common loss function is the absolute error L(y, f(x)) = |y — f(x)]

MSE penalizes outliers with large observed residuals severely, and hence is less robust in
data with long-tailed distributions.

MAE is more robust against outliers.

Other criteria include the Huber loss:

_ (v =f())? ly—f(x)<d
Ly, f(x)) = { 25(}),/, f(x) — o2 yotherwise

NANOx81 Fall 2023

26

Loss functions for binary classification

Consider a simple binary classification with two levels (-1, 1). The decision boundary is at
0.

Using the square error does not make sense, since we only care about whether it is > 0 or
< 0.

Margin yf(x) is positive when prediction and actual value is in the same class, and
negative if they are in opposite classes.

Need a loss that penalizes negative values much more than positive values for margins,
i.e., monotone decreasing function.

Exponential loss: L(y,f(x)) = e—Yf(x)

Binomial /multinomial loss (can be used for K-classes):

K K
L(y, == Iy = Gu)fu(x) + log (Z eff(X>>
k=1

=1

NANOx81 Fall 2023 27

Loss functions for binary classification

3 A Misclassification
Exponential
o Binomial Deviance
o —— Squared Error
—— Support Vector
N
n
6
e
— <7
Q
S
w0
o
o
o

Figure: Loss functions for binary classification. Response: y = £1. X-axis is the margin y - f.
Misclassification : /(sign(f) # y); exponential: e~*'; binomial deviance: log(1 + e~2""); squared error:
(y — f)? ; and support vector: (1 — yf),. Source: [1]

NANOx81 Fall 2023 28

Random Forests

@ Bagging: average many noisy, unbiased models to reduce variance.
@ Random forest: Grow B trees at random and average the results. Classification: majority
vote (mode), regression: mean.
@ Tree growing:
@ At each branch, select m variables at random from p variables.
@ Determine best split among the m.

© Split node into two daughter nodes.
© Repeat until minimum node size is reached.

NANOx81 Fall 2023 29

Y i 24 Random Forests
Random Forest Algorithm

/
]

|
o
DDL []] ‘DD

LI

L]

Instance

Classification: Majority voting

NANOx81

Regression: Averaging

—

Prediction

Fall 2023

N ©-<i"¢ 2" Rardom Forests
Example: Identification of Local Environments from K-edge XANES

Database Absorption Atom Local Environment Features
{7 stucwre)

dhg
S

Spectrum

o

1 O o - ™ o

1R 7 2 o [e o 0

Prediction

Input Predicted Coord. Env

Figure: Workflow for classification of K-edge XANES spectra into one of 25 coordination
environments.[?]

NANOx81 Fall 2023

31

N ©-<i"¢ 2" Rardom Forests
Example: Identification of Local Environments from K-edge XANES

Coord. Env. Classification Accuracy

Classifier
— KNN

Alkali

Alkaline

Metalloid

Figure: Comparison of different ML methods for K-edge XANAES classification.[?]

NANOx81 Fall 2023

32

I B« Lo ool
Bibliography

[§] Trevor Hastie, Robert Tibshirani, and Jerome Friedman.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second
Edition.

Springer, New York, NY, 2nd edition edition, 2016.

NANOx81 Fall 2023

33

The End

NANOx81 Fall 2023

34

	Preliminaries
	Generalized Additive Models
	Trees
	Ensemble learning
	Boosting
	Loss functions and robustness
	Bagging and Random Forests

