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Preliminaries

Preliminaries

Linear models, even those based on basis expansion, have high bias.

In contrast, kernel methods fit many models to each point using the observations close to
that point.

Localization is based on a weighting function Kλ(x0; xi ) that assigns a weight to each
observation xi based on distance to a query point.

Typically, the kernel function has only a single parameter (λ) to determine width of
neighborhood.

The “model” is the entire training data set.

While undoubtedly effective in many instances, kernel methods lack interpretability that is
often desired for scientific applications.
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k nearest neighbor

k Nearest Neighbor (kNN)

Simplest possible model for prediction - even simpler
than linear regression!

Given a set of observations, we take the average of the k
nearest neighbors as an estimate.

E [Y |X = x ] = f̂ (x) = Ave(yi |xi ∈ Nk(x))

Prediction is bumpy, i.e., changes in average are discrete
at the boundary between the inclusion and exclusion of a
point.
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Nearest-Neighbor Kernel
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Epanechnikov Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are gen-
erated at random from the blue curve with Gaussian
errors: Y = sin(4X) + ε, X ∼ U [0, 1], ε ∼ N(0, 1/3).
In the left panel the green curve is the result of a
30-nearest-neighbor running-mean smoother. The red

point is the fitted constant f̂(x0), and the red circles
indicate those observations contributing to the fit at x0.
The solid yellow region indicates the weights assigned to
observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel
with (half) window width λ = 0.2.
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k nearest neighbor

Improving on kNN

kNN gives equal weight to all points that falls within the
k nearest neighbor region.

Solution: use a weighted kernel that goes to zero
smoothly with distance from point.

Nadaraya-Watson kernel-weighted average:

f̂ (x) =

∑N
i=1 Kλ(x0, xi )yi∑N
i=1 Kλ(x0, xi )

Epanechnikov quadratic kernel:

Kλ(x0, x) = D(
|x − x0|

λ
),D(t) =

3

4
(1− t2) if |t| ≤ 1
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Nearest-Neighbor Kernel
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Epanechnikov Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are gen-
erated at random from the blue curve with Gaussian
errors: Y = sin(4X) + ε, X ∼ U [0, 1], ε ∼ N(0, 1/3).
In the left panel the green curve is the result of a
30-nearest-neighbor running-mean smoother. The red

point is the fitted constant f̂(x0), and the red circles
indicate those observations contributing to the fit at x0.
The solid yellow region indicates the weights assigned to
observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel
with (half) window width λ = 0.2.
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k nearest neighbor

Considerations

Smoothing parameter λ determines the width of the local neighborhood. Large λ means
lower variance but higher bias.

Metric window widths: As local density increases, vias decreases.

Epanechnikov kernel is compact. Tri-cube kernel D(t) = (1− |t|3)3 if |t| ≤ 1 is another
compact kernel that is flatter and differentiable at bounday.

Gaussian kernel is a popular non-compact kernel. Standard deviation controls width of
kernel.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 6
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FIGURE 6.2. A comparison of three popular kernels
for local smoothing. Each has been calibrated to inte-
grate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support,
while the Epanechnikov kernel has none. The Gaus-
sian kernel is continuously differentiable, but has infi-
nite support.
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k nearest neighbor

Code

from sklearn.neighbors import KNeighborsRegressor

from sklearn.model_selection import cross_val_predict, KFold

kfold = KFold(n_splits=5, shuffle=True, random_state=42)

knn = KNeighborsRegressor(n_neighbors=14)

yhat_knn = cross_val_predict(knn, x, y, cv=kfold)
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k nearest neighbor

Local linear/polynomial regression

Local linear/polynomial regression can be used, which corrects bias at boundary regions
at the expense of higher variance.

For higher dimensions especially, local linear regression is preferred to local constant fit.
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N-W Kernel at Boundary
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Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias
problems at or near the boundaries of the domain.
The true function is approximately linear here, but
most of the observations in the neighborhood have a
higher mean than the target point, so despite weight-
ing, their mean will be biased upwards. By fitting a lo-
cally weighted linear regression (right panel), this bias
is removed to first order

Often used to interpolate within a region of feature space.
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Kernel Density Estimation

Kernel Density Estimation

Estimate the probability density function f̂X (x) as:

f̂X (x0) =
#xi ∈ N(x0)

Nλ

where λ is the width of the bin and N(x0) is the neighbor of x0 and N is the total data
count.

Often, the smooth Parzen estimate is used.

f̂X (x0) =
1

Nλ

N∑
i=1

Kλ(x0, xi )

Popular choice of Kλ is the Gaussian kernel ϕ( x−x0
λ ).

Essentially fX (x) is the convolution of the sample distribution with the Gaussian
distribution with standard deviation λ.
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Kernel Density Estimation

Gaussian KDE
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FIGURE 6.14. The left panel shows the two separate
density estimates for systolic blood pressure in the CHD
versus no-CHD groups, using a Gaussian kernel density
estimate in each. The right panel shows the estimated
posterior probabilities for CHD, using (6.25).
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Kernel Density Estimation

Example of Gaussian Density Estimation in Interatomic Potentials

Gaussian Approximation Potential[1] uses a smooth-overlap of atomic positions (SOAP)
kernel in a Gaussian process model:

ρi (R) =
∑
j

fc(Rij) · exp(−
|R − Rij |2

2σ2
atom

) =
∑
nlm

cnlm gn(R)Ylm(R̂),
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Kernel Density Classification

Kernel Density Classification

Given the kernel density estimate for each class f̂j(X ) and class prior πj , we can use Bayes
theorem to perform classification:

P(G = j |X = x0) =
πj f̂j(x0)∑J

k=1 πk f̂k(x0)

However, density estimation for each class is not necessary if we only need to perform
classification.

The key is to estimate the posterior decision boundary between classes accurately.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 6
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FIGURE 6.15. The population class densities may
have interesting structure (left) that disappears when
the posterior probabilities are formed (right).
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Kernel Density Classification

Naive Bayes

Highly popular approach and often outperforms more sophisticated alternatives.

Assumes features Xk are independent, i.e., fj(X ) =
∏p

k=1 fjk(Xk), i.e., class conditional
probabilities can be estimated using 1D kernel densities!

log
P(G = l |X )

P(G = k |X )
= log

πl
πj

+

p∑
k=1

log
flk(Xk)

fjk(Xk)

= αl +

p∑
k=1

glk(Xk)

We are converting a high-dimensional problem into simpler generalized additive model
(see later lecture on GAMs).
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Kernel Density Classification

Radial Basis Functions

Treat kernel functions as basis functions.

f (x) =
M∑
j=1

D(
||x − εj ||

λj
)βj

Each basis function is index by location (εj) and scale parameter λj .

Gaussian function is a common choice for D.

Parameters are optimized, typically using a least squares approach.
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Kernel Density Classification

Mixture Models

Type of kernel model.

f (x) =
M∑

m=1

αmϕ(x ;µm,Σm)

Again, Gaussian mixture model is by far the most common choice.

If covariance matrices are constrained to be scalars. then it is similar to a radial basis
expansion.

Typically fitted using maximum likelihood approach / expectation maximization (next
lecture).

Probability that observation i belongs in component m is given by:

r̂im =
αmϕ(x ;µm,Σm)∑M
k=1 αkϕ(x ;µk ,Σk)

Very often used in spectroscopy analysis.
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Kernel Density Classification

CARS spectroscopy analysis using Gaussian Mixtures

Figure: Coherent anti-Stokes Raman scattering (CARS) analysis. For rapid (online) determination of
chemical composition. From ref. [2]
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Kernel Density Classification
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Albert P Bartók, Mike C Payne, Risi Kondor, and Gábor Csányi.
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Kernel Density Classification

The End
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