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Preliminaries

Preliminaries

Here, we will take a digression from the supervised learning that we have focused on so
far, and go into unsupervised learning.

In supervised learning, model development is carried out with a set of input/output
examples (training data).

In unsupervised learning, the goal is to infer the properties of a set of data (e.g., its
distribution) without training examples.

We will include dimensionality reduction techniques within the umbrella of unsupervised
learning.
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Preliminaries

Supervised vs Unsupervised Learning

Supervised learning

Learn from example inputs and outputs
(labels).

Clear metrics of success (e.g., maximum
likelihood, MSE, MAE, etc.)

Computationally efficient.

Unsupervised Learning

Learn only from inputs.

No rigorously-defined metric of success.

Computationally complex.
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Principal Component Analysis

Principal Component Analysis (PCA)

Briefly alluded to in lecture on Linear Methods (regressing on derived input directions).

Consider a dataset that has dimension p. The principal components provide a sequence of
best linear approximations to that data, of all ranks q ≤ p.

Let the observations be x1, x2, ..., xN. The rank q linear model for representing this data
is given by:

f (λ) = µ+ Vqλ

µ is a location vector, Vq is a p × q matrix with q orthogonal vectors, λ is a length q
vector of parameters.

We want to minimize the “reconstruction error”,

min
µ,Vq,λ

N∑
i=1

||xi − µ− Vqλi||2
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Principal Component Analysis

Solution

Minimizing wrt to µ and λi gives

µ̂ = x̄

λi = Vq
T (xi − x̄)

Need to solve:

min
Vq

N∑
i=1

||(xi − x̄)− VqVq
T (xi − x̄)||2
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Principal Component Analysis

Solution, contd.

Construct singular value decomposition (SVD) of X, the N × p matrix of centered xi.

X = UDVT

U is an N × p orthogonal matrix, D is a p × p diagonal matrix with singular values
d1 > d2 > ... > dp and V is p × p orthogonal matrix with right singular vectors
v1, v2, ...vp as columns.

UD are the principal components.

Xv1 has highest variance among all linear combination of features, followed by Xv2, Xv3,
etc.
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Principal Component Analysis

Linear regression of bulk modulus on first two PCAs of elemental features
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Principal Component Analysis

Code

from sklearn.decomposition import PCA

pca = PCA()

pca.fit(x)

x_pca = pca.transform(x)

print(pca.explained_variance_)

# Linear regression using PCA components

from sklearn import linear_model

from sklearn.model_selection import cross_val_predict, KFold

kfold = KFold(n_splits=5, shuffle=True, random_state=42)

mlr = linear_model.LinearRegression()

yhat_mlr = cross_val_predict(mlr, x_pca[:, 0:2], y, cv=kfold)
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Principal Component Analysis

Example of linear regression on PCA components
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Principal Component Analysis

Extensions to PCA

Principal curves: smooth 1D curved approximation to data.

Principal surfaces: curved 2D manifold approximation to data.
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Cluster Analysis

Cluster Analysis

Cluster observations into groups so that pairwise differences within cluster tend to be
smaller than differences between clusters.

Combinatorial algorithms Model observed data with no underlying probability model.
Mixture modeling Assumes samples are i.i.d. from some population with a probability

density function.
Mode seekers Estimate modes from PDF.
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Cluster Analysis

K-means

One of the most popular iterative descent clustering methods.

Often used with the Euclidean distance as the dissimlarity measure.

d(xi , x
′
i ) = ||xi − x ′i ||2

Classic k-means measure distance to centroids of clusters.

Other distance metrics are possible: weighted Euclidean, periodic boundary condition
distance, etc.

Variants:

K -medoids: Use one of points as cluster center instead of centroid. Removes influence of
large outliers that produce large distances.
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Cluster Analysis

K-means Algorithm

1 Initialize a set of k means (centroids), e.g., choosing k observations to be the initial
means (Forgy algo) or randomly assigns a cluster to each observation (random partition).

2 Assign each observation to the cluster with the smallest distance, i.e., partition the
observations using the Voronoi diagram generated by means.

3 Recalculate the new means of the observations in the new clusters.
4 Algorithm is converged when assignment no longer changes.

Figure: Four steps of K-means algorithm. Source: Wikipedia
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Cluster Analysis

Practical considerations

K-means is often used for vector quantization, i.e., split a set of values into k levels.

Determining K . Sometimes K is based on goals, e.g., if you have a scientific / practical
reason for having K clusters, e.g., only K instruments available or you want to bin the
compounds in K chemical classes.

Elbow Method

Goal: Minimize within-cluster sum of squares (wss), i.e, min(
∑K

k=1 W (Ck))
Plot wss vs k. Location of bend (knee) is generally considered as an indicator of the
appropriate number of clusters. k = 4 seems appropriate for Figure below.

Other methods: Gap analysis
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Cluster Analysis

Hierarchical Clustering

Does not require specific of number of clusters.

Require dissimilarity measure.

Produce hierarchical representations in which the clusters at each level of the hierarchy
are created by merging clusters at the next lower level.

Two paradigms: agglomerative (bottom-up merging) and divisive (top-down splitting).

Typically shown in a dendrogram.
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Cluster Analysis

Recent application: Lithium Superionic Conductors

symmetry and ordering of the anionic lattice and showed strong
correlation with ionic conductivity (Fig. 2). Given the information
of lattice volume and anion chemistry critical for ion diffusion
were removed from the mXRD descriptor, the resulted clustering
of Li-conducting phases suggests that the long-range periodicity
of the anion lattice as encoded in mXRD plays a fundamental role
in Li-ion diffusion. By analyzing the structural origin of the
clustered groups, (Supplementary Note 6), we found the materials
in Group I, II, and III correspond to highly symmetrical fcc (face
centered cubic), hcp (hexagonal close packed), and bcc anion
lattices, respectively. For these anion lattices, Li ions are sym-
metrically confined in highly symmetric tetrahedral or octahedral
sites of anions (as an example, Fig. 2e for Li2S), and migrate
among these well-defined sites13. Groups IV, V, and VI show a
moderate level of variance, which can be understood as mild
distortion of the anion lattices. The distortion of anion lattices
disturbs Li+ bonding environments and causes Li+ to deviate
from highly symmetric locations to geometrically frustrated
configurations. For example, in LGPS and LLZO, the distorted

anion polyhedra generate multiple positions to host Li ions,
observed as the spread Li-ion probability density observed in
AIMD simulations (Fig. 2e), which were represented as partially
occupied Li sites (e.g., Li1 and 96 h sites in LGPS and LLZO,
respectively) from diffraction experiments4,5. Having multiple
positions for Li+ to occupy may lead to a degeneracy of Li sub-
lattice energy and an entropically-enabled disordered-Li sub-
lattice migrating among metastable configurations18,19.
Therefore, as observed in their mXRD representations, the SSLCs
clustered in group V and VI exhibit the characteristics of mod-
erately distorted anion lattices, which is closely related to dis-
ordered Li sublattice for fast Li-ion conduction. The materials in
Group VII, as reflected by the high standard deviation of mXRD
peaks, correspond to the least symmetric and highly disordered
anion lattices (Supplementary Figs 10–12). The highly disordered
anion lattices in these materials may locally trap Li ions and
impede Li-ion percolation across the crystal structure (Supple-
mentary Fig. 13), resulting in the low conductivities observed for
compounds in this group.
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Fig. 2 Unsupervised clustering of all Li-containing compounds. a Bottom-up tree diagram (dendrogram) generated using the agglomerative hierarchical
clustering method. The dashed line shows the position where all compounds are partitioned into seven groups, marked as I–VII from left to right and
distinguished by different colors. bMapping the dendrogram to the conductivity reveals the grouping of known solid-state Li-ion conductors in group V and
VI. The color bar shows the scale of σRT. The gray color indicates the conductivity has not been measured for the corresponding compound. c Violin plots of
σRT data grouped in the grouping. The outer shells of the violins bound all data, narrow horizontal lines bound 95% of the data, thick horizontal lines bound
50% of the data, and white dots represent medians. The dashed line shows the position of σRT= 10–4 S cm−1. d mXRD of all materials in group I–VI and a
part of group VII. The colored boxes mark the positions of main characteristic peaks for each group. e Crystal structures (left) and (right) Li sites (green
sphere) determined by local anion (yellow/red sphere) configuration, corresponding to isosurfaces (green) of Li probability density from AIMD
simulations. Li2S (top) with highly symmetric anion lattice and ordered Li sublattice versus LGPS (middle) and LLZO (bottom) SSLCs with distorted anion
lattices and disordered Li sublattices

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13214-1

4 NATURE COMMUNICATIONS |         (2019) 10:5260 | https://doi.org/10.1038/s41467-019-13214-1 | www.nature.com/naturecommunications

Figure: a. Dendrogram generated using the agglomerative hierarchical clustering method. The dashed
line shows the position where all compounds are partitioned into seven groups, marked as I–VII from
left to right and distinguished by different colors. b Mapping the dendrogram to the conductivity
reveals the grouping of known solid-state Li-ion conductors in group V and VI. Reproduced from [1].
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Cluster Analysis

Density-based Clustering

Clusters are defined as areas of higher density.

Most popular variant is Density-based spatial clustering of applications with noise
(DBSCAN).[2]

DBSCAN groups together points that are closely packed together and marks points that
lie alone in low-density regions as outliers.

Key parameters of the DBSCAN algorithm are:

eps: Max distance between two samples for one to be considered as in the neighborhood of
the other.
min samples: No. of samples in a neighborhood for a point to be considered as a core point.
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Cluster Analysis

K-means and DBSCAN in scikit-learn

# Reading images using matplotlib

from matplotlib import image

import matplotlib.pyplot as plt

import numpy as np

# load image as numpy array.

data = image.imread("example.png")

# Display image

plt.imshow(data)

from sklearn.cluster import kmeans, DBSCAN

clustering = KMeans(k).fit(X)

print(clustering.labels_)

clustering = DBSCAN(eps=3, min_samples=2).fit(X)

print(clustering.labels_)
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Cluster Analysis
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Cluster Analysis

The End
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