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Preliminaries

@ Linear methods can also be used for classification, i.e., decision boundaries are linear.

@ These methods are surprisingly effective across a large spectrum of datasets, even
compared to more complex ML models.
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Metal vs Insulator Dataset
To demonstrate the use of these methods, we will first discuss the “toy” dataset.

2000+ binary (A,B,) compounds with experimental band gaps.
Class 0: metals; Class 1: insulators.

Using pymatgen, we can generate some simple features. Here, we will create simply
features based on the mean and absolute difference in electronegativity between A and B

(why?).
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Creating the features and classes

import numpy as np
import pandas as pd
from pymatgen.core import Composition

binaries = pd.read_csv("binary_band_gap.csv")

# We create a column holding the Composition object.

# Note the use of list comprehension in Python.

binaries["composition"] = [Composition(c) for ¢ in binaries["Formula"l]
electronegs = [[el.X for el in c] for ¢ in binaries["composition"]]

# Create the features mean and difference between electronegativities
binaries["mean_X"] = [np.mean(e) for e in electronegs]

binaries["diff_X"] = [max(e) - min(e) for e in electronegs]

# Label metals (band gap of 0. le-5 is used as numerical tolerance) as class 0
# Insulators are labelled as class 1.

binaries["class"] = [0 if eg < le-5 else 1 for eg in binaries["Eg (eV)"I]
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Basic concepts

@ If there are K classes, we have a N x K indicator response matrix. Each row is a vector
Y = (Y1, Y2, ..., Yk) where Yy = 1 if the instance belongs to the kth class and all other
Ys are 0.

0 0 1
Y — 1 0 0
01 .. 0

o For the kth response variable, the fitted f(x) = ko + BAka_

Decision boundary between k and / class is given by f(x) = f(x).

o
@ Input is divided into regions.
e Similar to linear regression, we can augment the input space with polynomial (e.g.,

X2, X5, X1X2) and other basis functions, leading to boundaries that are non-linear.
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Linear regression of indicator matrix

@ Treat each column of Y as a target. Least
squares solution:

Y = X(XTX)7IXTY
@ For each new observation x, we compute
f(x) = (1,xT)(XTX)"1XTY.

@ Find the largest component, and that will
result in the classification k,

G(x) = argmaxyeg fi(x).
@ Major issue: some categories may be
masked for K > 3.
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Discriminant Analysis

o From Bayes rule, we have:

fk(X)ﬂ'k
P(G=kIX=x)= ——2F——
( | ) S Al

@ where fi(x) are the class conditional probability densities (P(X = x|G = k)) and 7y are
the prior probabilities of being in class k.

@ Most common approach - assume Gaussian class densities.

1 1 _
(= ) TE O = k)

fi(x) = ORI exp—5
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Linear Discriminant Analysis

@ Assume all classes have a common covariance matrix, i.e., Xy = 2.
@ To compare two classes k and /, we can compare the log ratios.
Tk

P(G=k|X=x) fi(x)
PE—Tx=x ~ ik Pt

log

2
+x T e — )

Tk 1 —
= |0g; — =+ ) " (ke — 1)

@ At the decision boundary, P(G = k|X = x) = P(G = /|X = x), which leads to a linear
equation in x.
e Equivalently, we have

1

G(x) = argmax {Iogﬂk — E,u,z—z_l,uk + XTZ_lpk}
k
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Linear Discriminant Analysis, contd.

@ In general, we do not know the prior distributions and covariance matrix. These are
estimated from the data.

o 7k = Ni/N
o [k = Zg,-:k xi/ N
o £ =301 il — 4i)T (i — 1)/ (N = K)
@ Avoids masking problem of linear regression classification.

@ For the example data,
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Quadratic Discriminant Analysis

@ Covariances are not assumed equal.

1 _ 1
G(x) = arg;{nax {Iogwk — §(X ) TS (x = ) — 5 log |Zk}

@ No cancellation of terms and decision boundaries are quadratic.
o Covariances must be estimated for each category.
@ For the same metal-insulator example,

class

20  Accuracy =0.778
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Discriminant analysis in scikit-learn

from sklearn.discriminant_analysis import (
LinearDiscriminantAnalysis,
QuadraticDiscriminantAnalysis,

lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)
X = binaries[["mean_X", "diff_X"]1]

y = binaries["class"]

model = lda.fit(X, y)

y_pred = model.predict(X)

qda = QuadraticDiscriminantAnalysis(store_covariance=True)
y_pred = qda.fit(X, y).predict(X)
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Logistic regression

@ Model posterior probabilities with linear function.

P(G = 1|X = x)

| = I
O (G K’X— ) 510_'_61 X
P(G =2|X = x) T
| =
OgP(G KIX = x) B2 + By x
P(G=K—1|X =x) ;
log P(G = KIX = x) Bk—1)0 + Br—1X

@ Results in the following posterior probabilities:

exp (B10 + B{ x)

P(G=1X=x) = 14+ 37 exp (Bro + B x)

P(G=KIX=x) = !

1+ 35 Y exp (Bro + B x)
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Solving for the Logistic Regression Coefficients

o Typically fitted using maximum likelihood.
N
I(B) = log P(G = k|X = xi; §)
i=1

o Differentiation and setting (% = 0 leads to equations that are non-linear in .

@ These equations are solved using some optimization algorithm (e.g., Newton-Raphson,

BFGS, etc.).
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______________________ DcimnentAnss |
Logistic regression on metal /insulator dataset

from sklearn.linear_model import LogisticRegression

clf = LogisticRegression(penalty="none", random_state=0)
model = clf.fit(X, y)

y_pred = model.predict(X)
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Loss functions for binary classification

Consider a simple binary classification with two levels (-1, 1). The decision boundary is at
0.

Using the square error does not make sense, since we only care about whether it is > 0 or
< 0.

Margin yf(x) is positive when prediction and actual value is in the same class, and
negative if they are in opposite classes.

Need a loss that penalizes negative values much more than positive values for margins,
i.e., monotone decreasing function.

Exponential loss: L(y,f(x)) = e—Yf(x)

Binomial /multinomial loss (can be used for K-classes):

K K
L(y, == Iy = Gu)fu(x) + log (Z eff(X>>
k=1

=1

NANOx81 Fall 2023 16



Loss functions for binary classification
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Figure: Loss functions for binary classification. Response: y = £1. X-axis is the margin y - f.
Misclassification : /(sign(f) # y); exponential: e~*'; binomial deviance: log(1 + e~2""); squared error:
(y — f)? ; and support vector: (1 — yf),. Source: [?]
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