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Overview

© Preliminaries

© Improving on linear models
@ Subset selection
@ Shrinkage
@ Derived input directions

© Extending linear methods
@ Transformation of inputs
e Piece-wise polynomials
@ Gaussian basis functions

@ Wavelet and Fourier basis functions
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Preliminaries

@ In this lecture, we will look at various approaches to improving and extending simple
linear models.

@ It is important to note that techniques and concepts such as regularization, shrinkage and
transformation of inputs are general and extend to other models.
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Improving on linear models

Improving on linear models
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Feature selection

o Often, we want to improve on the least squares model.

e To improve prediction accuracy by sacrificing some bias for reduced variance.
e To improve interpretability by reducing number of features or descriptors.

@ Three main approaches:

@ Subset selection
@ Shrinkage methods
© Dimension reduction
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Subset selection

Best subset selection

Brute force approach.

From p parameters, find the subset of k parameters that results in the smallest RSS.
Combinatorially expensive for large p and large k.

Note that the best subset for a larger k does not necessarily include the best subset for a

smaller k.
Forward- or backward-stepwise selection
@ Forward: Start with intercept, and iteratively add feature that most improves the fit.
@ Backward: Start with full model, and sequentially deletes the feature with least impact on
the fit.
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R <5
Shrinkage methods

@ Subset methods is discrete, i.e., retains/discards variables, and tends to exhibit high
variance.

@ Shrinkage methods are more continuous and do not suffer as much from high variability.

@ Basic concept: instead of finding the parameters that minimizes the RSS only, we add a
penalty term that penalizes more complex models, e.g., models with larger coefficients or
larger number of coefficients. This “shrinks” the coefficients, in some cases, to 0.
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Ridge regression (L, regularization)

N

p P
[ridge — arg[gnin Z(}/i —Bo — Z Bixj)? + A Z 51'2
j=1 Jj=1

i=1
@ A > 0 is the shrinkage parameter. The larger the ), the greater the shrinkage.
@ Also equivalent to:
N

P
Bridge — arggnin Z(y:' —Bo— Z Bix)?
i=1 J=1

P
subject toZﬁf <t
j=1
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R <5
Ridge regression - Key details

@ Intercept (o) is not part of penalty term.

@ Inputs should be scaled prior to performing ridge regression, typically by centering to the
mean and scaling to unit variance:

X T

Sx;

Zj:
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N " r'=c*
LASSO (L; regularization)

N

p p
BLASSO — arggnin Z(Yi = Bo— Zﬁjxj)2 + )‘Z 1]
j=1 J=1

i=1

@ Least Absolute Shrinkage and Selection Operator
@ )\ > 0 is the shrinkage parameter. The larger the A, the greater the shrinkage.
@ Also equivalent to:

N P
BLASSO — argﬁmin Z(y; — Bo — ZBJ‘Xj)z
i=1 Jj=1

p
subject toz 1Bj| < t
j=1
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R <5
LASSO regression - Key details

o Intercept (/o) is not part of penalty term.
@ Inputs should be scaled prior to performing lasso regression, just as in ridge regression.
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SR """~
Subset vs ridge vs LASSO

@ Consider a set of orthonormal features.

e Ridge: proportional shrinkage. No coefficients are set to zero.
e LASSO: “soft” thresholding. Translates coefficients by a factor, truncating at zero.
o Best-subset: “hard” thresholding. Drops all coefficients below a certain threshold.

Best subset Ridge LASSO
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Other variants of shrinkage methods

o Elastic net penalty:

p
A aZBJQ+(1—a)

Jj=1

@ Least angle regression
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Derived input directions

@ General concept: transforms input X into a smaller subset of z,;, and regress on z,,

@ Principal component regression:
e Transform non-orthonormal features into orthonormal directions using Principal Component
Analysis (PCA).
o Choose M directions that have the highest eigenvalues (explains the most variance) and
discards the rest.
o Will revisit at a later lecture.
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R 0= Pt rections
Partial Least Squares (PLS)

o Algorithm:
Q@ Compute ¢1; =< x5,y > for each j.
© First transformed direction z; = }_; ¢1xj, i.e., each direction is weighted by strength of
effect on y.
© Regress y on z; to obtain 6y, orthogonalize xi, ...xp wrt z; via XJ/ =Xj —
© Repeat until M < p coefficients are obtained.

<z1,X>
<z1,21> 1

o Finds directions with high variance and high correlation with response.
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Preliminaries

It is highly unlikely that the true function f(X) is linear in X.

@ In some cases, linearity is a reasonable assumption, e.g., a first order Taylor series
expansion:
a)?

f(x) = f(a) + F(a)(x — a) + f”(a>(X;!

(x —a)®

"
+ f"(a) 30

Examples where this is used in materials science - linear elasticity (Hooke's law), etc.

More frequently, we perform a transformation of inputs to create a linear basis expansion.
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General concept

@ Express:

where h,,, is the mt" transformation of X.
@ This is known as a linear basis expansion in X.

@ The key lies in choice of the basis functions hp,.
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Examples of basis expansions

@ hp(X) = ij, hm(X) = XiX;

e Polynomial expansion to higher-order Taylor series terms.

e No. of terms increases exponentially with degree of polynomial. For p variables, we have
O(p?) square and cross-product terms in a quadratic model. For a degree d polynomial, we
have O(p9).

hm(X) = log(X;), sqrt(X;), exp(iX;): non-linear transformations in X.

hm(X) = I(Lm < Xk < Um): Piece-wise division of regions of X. E.g., cubic splines.
hm(X) = RBF(||X — Xml||): radial basis function, e.g., Gaussian.

Typically, basis functions are used simply to allow a more flexible representation of the
data. The basis functions can span a very large (sometimes infinite) set, from which a
selection has to be made:

e Restriction - Truncate the choice of basis functions using some criteria.

o Selection - Choose basis functions that contribute significantly to the fit.

o Regularization - Use the whole and/or very large subset and apply regularization techniques

(e.g., ridge or LASSO) to restrict coefficients.
NANOx81 Fall 2023 18



Linearization from physical laws

@ Arrhenius law:
E,

RT

r= Aexp(——) — log(r) = log(A) —

@ Ising model:

- Z Jijoioj — ,uZ hjo;
J

<ij>

[T

| | v | v
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Compressive sensing for cluster expansions
@ Cluster expansion of energy on lattice points:

0)=Eo+ Y 4 [[v)
f f

@ o is the vector representing occupation of lattice sites, [ [, are the cluster basis functions,
Jr are effective cluster interactions (ECls).

e Compressive sensing: essentially a LASSO to solve for ECls.[1]

e
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Piecewise polynomials

Piecewise Constant

hi(X) = 1(X < &), ha(X) = 1(& < X < &), h3(X) = I(X = &)

(X = &r

&
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Parameters:
@ No. of knots
@ Order of polynomial

e Continuity at knots (value, first derivative, second derivative,
etc.). For a polynomial of order N, we usually want all
derivatives < N to be continuous.
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Cubic splines

Probably the most commonly used.

Piecewise Cubic Polynomials

Continuous 1st and 2nd derivatives.

Discontinuous Continuous

| s |, e | Natural cubic spline: polynomial is linear
i | SRRy 4 .
T A [N // beyond boundaries.

@ Smoothing spline: Use regularization to
& & & & control complexity:
Continuous First Derivative Continuous Second Derivative
%, 0 %0 0
AR | | ¥ RSS(f, \) E {yi—f(xi)}
o’ 2% % o o° . . % o

- - 1/ 2
&1 &2 & &2 +)\ /{f (t)} dt
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Examples of cubic spline fitting

@ Spline-based Modified Embedded Atom Method (MEAM)
E=) o)+ U(m),
i<j i

mi=d o)+ Y Flr)f(ra)glcos(fj)

i<k.jkl=i

where ¢, U, p, f and g can be approximated by cubic splines.

96) (eV)
U(x) (eV)

N
0 15 2o 28
r (Angstroms) X
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_ Piecewisepohmomiah |
Demo: Cubic spline fitting in scipy

import numpy as np

## Import CubicSpline from scipy
from scipy.interpolate import CubicSpline

## x, y data for generating the spline fitting
x = np.arange(10)

y = np.sin(x)

## Fit the spline

cs = CubicSpline(x, y)

## Generate new T values

xs = np.arange(-0.5, 9.6, 0.1)

## Perform the interpolation on the new points
ys = cs(xs)

NANOx81 Fall 2023



Gaussian basis functions

hm(x) = exp(—k(x — Xm)2)

@ Gaussian functions centered at xp,.

@ Other similar types of functions include Lorentzian (hpy(x) =

Voigtian, Pearson type IV, and beta profiles.
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Example: Rietveld refinement
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Figure: Neutron powder diffraction diagram of CaUO,

@ Least squares fitting of theoretical line profile to match a measured diffraction pattern
NANOXs(le.g., X-ray, neutron).[2]
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Example: Rietveld refinement, contd.

Peak shape function:
PSF(0) = Q(0) @ A(0) @ W(0) + b(9)

o : Instrument broadening, A: Wavelength dispersion, W: Specimen function.
@ For single phase, minimize:
2
N m
o= ZW,' Yebs — | b+ KZIJ')/J'(XJ')
i=1 j=1

@ where yj(x;) is typically a pseudo-Voigt (mix of Gaussian and Lorentizan function)
function.

Note that the background (b;) holds no useful structural information and should be
minimized in experiments.
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Wavelet smoothing

Haar Wavelets

Symmlet-8 Wavelets

| “ L
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@ Complete orthonormal basis
@ Shrink and select toward sparse representation.

@ Able to represent both time and frequency
localization efficiently (Fourier basis can only do
frequency localization).
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Example: NMR Spectroscopy

j k Applications:

@ Suppression of large unwanted spectral line (left).

@ Rephasing spectrum perturbed by time-dependent

magnetic field.
MA A o Noise filtering

@ Detecting phases in a mixture

Figure: Subtraction of a large spectral
line: (top) the original spectrum of
polyethylene, (bottom) reconstructed
spectrum after removal of CH, peak.[3]
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N
Example: Fourier transform for analysis of extended X-ray absorption fine
structure (EXAFS)

Absorption

T e @ (a) The extended edge (orange part) contains information of atom

Energy relative to edge (eV)

— chemical environment.

— Synchrotron

@ (b) Subtract the background, convert energy to k-space unit, and
multiply the normalized intensity by k2

k2x(k)

Lo
Ab o om o

Len @ (c) Fourier transform k-space information to real space and obtain
the first shell bond length.

Ix(R)|
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