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Preliminaries

Preliminaries

We will go very deep into linear models.

Most of you probably have seen linear models in some form, but we will start from scratch
to further illustrate key concepts such as bias and variance.

Using linear examples, we will discuss the basic machine learning concepts of model
selection, cross-validation, and loss functions.
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Preliminaries

Notation

Capital letters, e.g., X denote variables.

Lower-case letters e.g., x , denote observations.

Dummy index j denotes different variables, e.g., Xj

Dummy index i denotes different observations, e.g., xi

Bolded variables are vector/matrices, e.g., y, X
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Linear regression

Linear Regression

Linear Regression
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Linear regression

Simplest possible model between target and feature

Y = f (X1,X2, ...,Xp) = β0 +

p∑
j=1

βjXj

Xj can be:

Quantitative inputs

Transformations of quantitative inputs, e.g., log, exp, powers, etc. Basis expansions, e.g.,
X2 = X 2

1 , X3 = X 3
1

Interactions between variables, e.g., X1X2

Encoding of levels of inputs
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Linear regression

Supervised learning

Given a set of paired observations {xij , yi}, what are the model parameters (in this case,
the coefficients βj) that are “optimal”?

“Optimal” is typically defined as minimization of some loss function (also known as cost
function) that measures the error of the model.
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Linear regression

Least squares regression

Consider the simple case of
Y = β0 + β1X1

In least squares regression, the loss function is defined as the sum squared error given the N
observations:

L(Y , f̂ (X )) =
N∑
i=1

(yi − f (xi ))
2

=
N∑
i=1

(yi − β0 − β1xi1)
2
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Linear regression

What are the optimal parameters β0 and β1?

∂L

∂β0
=

N∑
i=1

2(yi − β0 − β1xi1)(−1) = 0

=⇒
N∑
i=1

yi = Nβ0 +
N∑
i=1

β1xi1

=⇒ β0 = ȳ − β1x̄1

∂L

∂β1
=

N∑
i=1

2(yi − β0 − β1xi1)(−xi1) = 0

=⇒ β1 =

∑N
i=1 xi1yi − Nx̄1ȳ∑N
i=1 x

2
i1 − Nx̄12
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Linear regression

Reformulating the general multiple linear regression as a vector equation...

Considering N observations of

yi = β0 + β1xi1 ++β2xi2 + ...+ βpxip

Let

y =


y1
y2
...
yn

 ,β =


β0
β1
...
βp

 ,X =


1 x11 x12 ... x1p
1 x21 x22 ... x2p
...
1 xN1 xN2 ... xNp

 ,

So,
y = Xβ

Note that y is a N × 1 vector, β is a (p + 1)× 1 vector, and X is a N × (p + 1) matrix.
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Linear regression

Reformulating the general multiple linear regression as a vector equation...

L = RSS = (y − Xβ)T (y − Xβ)

Assuming (for the moment) that X has full column rank, and hence XTX is positive definite,
It can be shown using the same principles that the following unique solution for β is:

β̂ = (XTX)−1XTy

ŷ = Xβ̂ = X(XTX)−1XTy
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Linear regression

Graphic representation of MLR with two dependent variables

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.1. Linear least squares fitting with
X ∈ IR2. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y .

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3

x1
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ŷ

FIGURE 3.2. The N-dimensional geometry of least
squares regression with two predictors. The outcome
vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection
ŷ represents the vector of the least squares predictions

Figure: MLR minimizes sum square of residuals. The projection ŷ represents the vector of the least
squares predictions onto the hyperplane spanned by the input vectors x1 and x2. [1].
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Linear regression

Validity of least squares criterion

Observations are independently drawn at random.

Variance of y is constant given by σ2.

var(β̂) = (XTX)−1σ2

and σ is estimated using:

σ2 =
1

N − p − 1

N∑
i=1

(yi − ŷi )
2
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Linear regression

Example materials data

Target: Bulk modulus of elements (from Materials
Project)

Candidate features:

Melting point (MP)
Boiling point (MP)
Atomic number (Z)
Electronegativity (χ)
Atomic radius (r)

Question: Why these features?

We will add some transformations of these inputs as
well, i.e., the square and square root of the
electronegativity and atomic radius.
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Linear regression

Using pandas for easy data manipulation

import pandas as pd

# Read in data and set first column as index.

data = pd.read_csv("element_data.csv", index_col=0)

# Generate transformations as additional columns.

data["X^2"] = data["X"] ** 2

data["sqrt(X)"] = data["X"] ** 0.5

data["r^2"] = data["r"] ** 2

data["sqrt(r)"] = data["r"] ** 0.5

# Define our features, which is all the columns

# excluding K, which is the target.

features = [c for c in data.columns if c != "K"]

x = data[features]

y = data["K"]
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Linear regression

MLR in scikit-learn

from sklearn import linear_model

reg = linear_model.LinearRegression()

reg.fit(x, y)

print(ref.coef_)

print(reg.intercept_)

Note that x should contain the features only - there is no need to add a 1 column for the
intercept. By default, the parameter fit intercept in sklearn.linear model.LinearRegression
is True. You can set it to False to do a MLR without intercept.

Documentation: link.
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Linear regression

Hypothesis Testing for Coefficients

To derive insights into a model, we often want to know which of the input parameters are
the most relevant to the target.

Under assumptions of the errors in y follow a Gaussian distribution N(0, σ2), the errors in
β̂ also have a Gaussian distribution N(β, (XTX)−1σ2)

Hypothesis testing can be carried out for whether a particular βj is 0 using the following
test statistic:

tj =
β̂j

σ
√
vj

where vj is the jth diagonal element of (XTX)−1. tj has a t distribution with N − p − 1
degrees of freedom (dof).
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Linear regression

Hypothesis Testing for Groups of Coefficients

More often, we want to test groups of coefficient for significance. E.g., to the k levels of
a categorical variable.

We will use the following F statistic:

F =
(RSS0 − RSS1)/(p1 − p0)

RSS1/(N − p1 − 1)

where RSS0 is the RSS of the larger model with p0 + 1 parameters and RSS1 is the RSS
of the smaller model with p1 + 1 parameters with p0 − p1 parameters set to zero. The F
statistic has a distribution of Fp1−p0,N−p1−1.
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Linear regression

Gauss-Markov Theorem

Consider the estimator θ̂ for a variable θ.

MSE = E (θ̂ − θ)2

= var(θ̂) + [E (θ̂)− θ]2

The MSE can be broken down into the variance of the estimate itself and the square of
the bias.

Gauss-Markov Theorem

The least squares estimator has the smallest variance among all linear unbiased estimators.

However, there can be estimators that are biased with smaller MSE.
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Model selection

Model selection

Model selection
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Model selection

Model performance

We will take a brief digression into model assessment and selection before continuing on
to other linear methods.

Model performance is related to its performance on independent test data, i.e., one
cannot simply report a model’s performance on training data alone.

Note that this section is deliberately limited to high level concepts that are needed to
continue further in exploration of linear methods. A more detailed discussion will be
performed in later lectures.
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Model selection

Typical measures of model performance

Mean squared error (MSE):

L(Y , f̂ (X )) =
1

N

N∑
i=1

(yi − f (xi ))
2

Mean absolute error (MAE):

L(Y , f̂ (X )) =
1

N

N∑
i=1

|yi − f (xi )|

Test error: L over independent test set.

Training error: L over training set.
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Model selection

Training and test errors with model complexity

Model complexity increases as the number of parameters increases (e.g., number of
independent variables in MLR).

Training errors always decrease with increasing model complexity.

However, test errors do not have a monotonic relationship with model complexity. Test
errors are high when model complexity is too low (underfitting) or too high (overfitting).

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.1. Behavior of test sample and training
sample error as the model complexity is varied. The
light blue curves show the training error err, while the
light red curves show the conditional test error ErrT
for 100 training sets of size 50 each, as the model com-
plexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].
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Model selection

Under-fitting versus over-fitting

Figure: Source: Mathworks
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Model selection

Training, validation and test data

Model selection: estimating the performance of different models in order to choose the
best one.

Model assessment: having chosen a final model, estimating its prediction error
(generalization error) on new data.

Ideal data-rich situation: Divide data into three parts:

Training set: For training the model.
Validation set: For estimating prediction error to select the model.
Test set: For assessing the generalization error of the final model.

Typical training:validation:test split is 50:25:25 or 80:10:10, or in very data-poor
situations, maybe even 90:5:5.

Note that at no point in the model fitting process should the test set be “seen”.
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Model selection

K -fold cross validation (CV)

Simplest and most widely used approach for model validation.

Data set is split into K buckets (usually by random).

Typical values of K is 5 or 10. K = N is known as “leave-one-out” CV.

Train Train Validate Train Train

CV score is computed on the validate data set after training on the train data:

CV (f̂ −k(i), α) =
1

Nk(i)

Nk(i)∑
i=1

L(yi , f̂
−k(i)(xi , α))

assuming the kth data bucket has Nk(i) data points and f̂ −k(i) refers to the model fitted

with the kth data left out (N − Nk(i) data in fitting).
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Model selection

CV in scikit-learn

from sklearn.model_selection import cross_validate, KFold

kfold = KFold(n_splits=5, shuffle=True, random_state=42)

cv_results = cross_validate(ridge, z, y, cv=kfold)

Note that we have customized the KFold object passed to the cross validate method. The
reason is that our element data is non-random by default. So we want to perform
shuffling prior to doing the splits.

Documentation: link.
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Model selection

Characteristics of the example materials dataset

Before proceeding further, let us try to tease out some aspects of the dataset.

Quite clearly, there are correlations between some sets of variables.

In other words, the input features are non-orthonormal with each other.
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Model selection Loss functions and robustness

Loss functions for regression

We have thus far focused on the squared error loss L(y , f (x)) = (y − f (x))2

Another common loss function is the absolute error L(y , f (x)) = |y − f (x)|
MSE penalizes outliers with large observed residuals severely, and hence is less robust in
data with long-tailed distributions.

MAE is more robust against outliers.

Other criteria include the Huber loss:

L(y , f (x)) =

{
(y − f (x))2 |y − f (x)| ≤ δ

2δ(y − f (x)− δ2 otherwise
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Model selection Loss functions and robustness
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Model selection Loss functions and robustness

The End
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