Source code for megnet.utils.metrics

"""metrics for evaluating datasets"""
import numpy as np


[docs]def mae(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Simple mean absolute error calculations Args: y_true: (numpy array) ground truth y_pred: (numpy array) predicted values Returns: (float) mean absolute error """ return np.mean(np.abs(y_true - y_pred)).item()
[docs]def accuracy(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Simple accuracy calculation Args: y_true: numpy array of 0 and 1's y_pred: numpy array of predict sigmoid Returns: (float) accuracy """ y_pred = y_pred > 0.5 return np.sum(y_true == y_pred) / len(y_pred)