Source code for megnet.utils.metrics
"""metrics for evaluating datasets"""
import numpy as np
[docs]def mae(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Simple mean absolute error calculations
Args:
y_true: (numpy array) ground truth
y_pred: (numpy array) predicted values
Returns:
(float) mean absolute error
"""
return np.mean(np.abs(y_true - y_pred)).item()
[docs]def accuracy(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Simple accuracy calculation
Args:
y_true: numpy array of 0 and 1's
y_pred: numpy array of predict sigmoid
Returns:
(float) accuracy
"""
y_pred = y_pred > 0.5
return np.sum(y_true == y_pred) / len(y_pred)