Source code for megnet.layers.graph.schnet

"""
Schnet implementation
"""
import tensorflow as tf
import tensorflow.keras.backend as kb

from megnet.activations import softplus2
from megnet.layers.graph.base import GraphNetworkLayer


[docs]class InteractionLayer(GraphNetworkLayer): """ The Continuous filter InteractionLayer in Schnet Schütt et al. SchNet: A continuous-filter convolutional neural network for modeling quantum interactions Methods: call(inputs, mask=None): the logic of the layer, returns the final graph compute_output_shape(input_shape): compute static output shapes, returns list of tuple shapes build(input_shape): initialize the weights and biases for each function phi_e(inputs): update function for bonds and returns updated bond attribute e_p rho_e_v(e_p, inputs): aggregate updated bonds e_p to per atom attributes, b_e_p phi_v(b_e_p, inputs): update the atom attributes by the results from previous step b_e_p and all the inputs returns v_p. rho_e_u(e_p, inputs): aggregate bonds to global attribute rho_v_u(v_p, inputs): aggregate atom to global attributes get_config(): part of keras interface for serialization """ def __init__( self, activation=softplus2, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs, ): """ Args: activation (str): Default: None. The activation function used for each sub-neural network. Examples include 'relu', 'softmax', 'tanh', 'sigmoid' and etc. use_bias (bool): Default: True. Whether to use the bias term in the neural network. kernel_initializer (str): Default: 'glorot_uniform'. Initialization function for the layer kernel weights, bias_initializer (str): Default: 'zeros' activity_regularizer (str): Default: None. The regularization function for the output kernel_constraint (str): Default: None. Keras constraint for kernel values bias_constraint (str): Default: None .Keras constraint for bias values """ super().__init__( activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, **kwargs, )
[docs] def build(self, input_shapes): """ Build the weights for the layer Args: input_shapes (sequence of tuple): the shapes of all input tensors """ vdim = input_shapes[0][2] edim = input_shapes[1][2] with kb.name_scope(self.name): with kb.name_scope("phi_e"): e_shapes = [[edim, vdim]] + [[vdim, vdim]] * 2 self.phi_e_weights = [ self.add_weight( shape=i, initializer=self.kernel_initializer, name=f"weight_v_{j}", regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, ) for j, i in enumerate(e_shapes) ] if self.use_bias: self.phi_e_biases = [ self.add_weight( shape=(i[-1],), initializer=self.bias_initializer, name=f"bias_v_{j}", regularizer=self.bias_regularizer, constraint=self.bias_constraint, ) for j, i in enumerate(e_shapes) ] else: self.phi_e_biases = None with kb.name_scope(self.name): with kb.name_scope("phi_v"): v_shapes = [[vdim, vdim]] + [[vdim, vdim]] * 2 self.phi_v_weights = [ self.add_weight( shape=i, initializer=self.kernel_initializer, name=f"weight_v_{j}", regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, ) for j, i in enumerate(v_shapes) ] if self.use_bias: self.phi_v_biases = [ self.add_weight( shape=(i[-1],), initializer=self.bias_initializer, name=f"bias_v_{j}", regularizer=self.bias_regularizer, constraint=self.bias_constraint, ) for j, i in enumerate(v_shapes) ] else: self.phi_v_biases = None self.built = True
[docs] def compute_output_shape(self, input_shape): """ Compute output shapes from input shapes Args: input_shape (sequence of tuple): input shapes Returns: sequence of tuples output shapes """ return input_shape
[docs] def phi_e(self, inputs): """ Edge update function Args: inputs (tuple of tensor) Returns: output tensor """ nodes, edges, u, index1, index2, gnode, gbond = inputs return edges
[docs] def rho_e_v(self, e_p, inputs): """ Reduce edge attributes to node attribute, eqn 5 in the paper Args: e_p: updated bond inputs: the whole input list Returns: summed tensor """ nodes, edges, u, index1, index2, gnode, gbond = inputs atomwise1 = self._mlp(nodes, self.phi_v_weights[0], self.phi_v_biases[0]) cfconv1 = self.activation(self._mlp(edges, self.phi_e_weights[0], self.phi_e_biases[0])) cfconv2 = self.activation(self._mlp(cfconv1, self.phi_e_weights[1], self.phi_e_biases[1])) cfconv_out = self._mlp(cfconv2, self.phi_e_weights[2], self.phi_e_biases[2]) index1 = tf.reshape(index1, (-1,)) index2 = tf.reshape(index2, (-1,)) fr = tf.gather(atomwise1, index2, axis=1) after_cfconv = atomwise1 + tf.transpose( a=tf.math.segment_sum(tf.transpose(a=fr * cfconv_out, perm=[1, 0, 2]), index1), perm=[1, 0, 2] ) atomwise2 = self.activation(self._mlp(after_cfconv, self.phi_v_weights[1], self.phi_v_biases[1])) atomwise3 = self._mlp(atomwise2, self.phi_v_weights[2], self.phi_v_biases[2]) return atomwise3
[docs] def phi_v(self, b_ei_p, inputs): """ Node update function Args: b_ei_p (tensor): edge aggregated tensor inputs (tuple of tensors): other graph inputs Returns: updated node tensor """ nodes, edges, u, index1, index2, gnode, gbond = inputs return nodes + b_ei_p
[docs] def rho_e_u(self, e_p, inputs): """ aggregate edge to state Args: e_p (tensor): edge tensor inputs (tuple of tensors): other graph input tensors Returns: edge aggregated tensor for states """ return 0
[docs] def rho_v_u(self, v_p, inputs): """ Args: v_p (tf.Tensor): updated atom/node attributes inputs (Sequence): list or tuple for the graph inputs Returns: atom/node to global/state aggregated tensor """ return 0
[docs] def phi_u(self, b_e_p, b_v_p, inputs): """ Args: b_e_p (tf.Tensor): edge/bond to global aggregated tensor b_v_p (tf.Tensor): node/atom to global aggregated tensor inputs (Sequence): list or tuple for the graph inputs Returns: updated globa/state attributes """ return inputs[2]
@staticmethod def _mlp(input_, weights, bias): output = kb.dot(input_, weights) + bias return output
[docs] def get_config(self): """ Part of keras layer interface, where the signature is converted into a dict Returns: configurational dictionary """ base_config = super().get_config() return base_config