maml.sampling package
Package implementing sampling methods.
maml.sampling.clustering module
Clustering methods.
class maml.sampling.clustering.BirchClustering(n: int = 1, threshold_init=0.5, **kwargs)
Bases: BaseEstimator
, TransformerMixin
sklearn_auto_wrap_output_keys( = {‘transform’_ )
fit(X, y=None)
transform(PCAfeatures)
maml.sampling.direct module
maml.sampling.pca module
class maml.sampling.pca.PrincipalComponentAnalysis(weighting_PCs=True)
Bases: BaseEstimator
, TransformerMixin
Wrap around PCA in scikit-learn to support weighting PCs.
sklearn_auto_wrap_output_keys( = {‘transform’_ )
fit(normalized_features)
transform(normalized_features)
maml.sampling.stratified_sampling module
Implementation of stratefied sampling approaches.
class maml.sampling.stratified_sampling.SelectKFromClusters(k: int = 1, allow_duplicate=False)
Bases: BaseEstimator
, TransformerMixin
Wrapper around selection of K data from each cluster.
sklearn_auto_wrap_output_keys( = {‘transform’_ )
fit(X, y=None)
Fit the model.
- Parameters
- X – Input features
- y – Target.
transform(clustering_data: dict)
Perform clustering.
- Parameters clustering_data – Data to cluster.