Source code for pymatgen.analysis.diffusion.tests.test_analyzer

# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
from __future__ import annotations

import csv
import json
import os
import random

import matplotlib as mpl
import numpy as np
import pytest
import scipy.constants as const

from pymatgen.analysis.diffusion.analyzer import (
    DiffusionAnalyzer,
    fit_arrhenius,
    get_arrhenius_plot,
    get_conversion_factor,
)
from pymatgen.core.lattice import Lattice
from pymatgen.core.structure import Structure
from pymatgen.util.testing import PymatgenTest

module_dir = os.path.dirname(os.path.abspath(__file__))


[docs] class FuncTest(PymatgenTest):
[docs] def test_get_conversion_factor(self): s = PymatgenTest.get_structure("LiFePO4") # large tolerance because scipy constants changed between 0.16.1 and 0.17 self.assertAlmostEqual(41370704.343540139, get_conversion_factor(s, "Li", 600), delta=20)
[docs] def test_fit_arrhenius(self): Ea = 0.5 k = const.k / const.e c = 12 temps = np.array([300, 1000, 500]) diffusivities = c * np.exp(-Ea / (k * temps)) diffusivities *= np.array([1.00601834013, 1.00803236262, 0.98609720824]) r = fit_arrhenius(temps, diffusivities) self.assertAlmostEqual(r[0], Ea) self.assertAlmostEqual(r[1], c) self.assertAlmostEqual(r[2], 0.000895566) r = fit_arrhenius(temps, diffusivities, mode="exp", diffusivity_errors=diffusivities * 0.01) self.assertAlmostEqual(r[0], Ea, 5) self.assertAlmostEqual(r[1], c, 2) self.assertAlmostEqual(r[2], 0.000904815) # when not enough values for error estimate r2 = fit_arrhenius([1, 2], [10, 10]) self.assertAlmostEqual(r2[0], 0) self.assertAlmostEqual(r2[1], 10) assert r2[2] is None ax = get_arrhenius_plot(temps, diffusivities) assert isinstance(ax, mpl.axes.Axes) ax = get_arrhenius_plot(temps, diffusivities, mode="exp", diffusivity_errors=diffusivities * 0.01, unit="eV") assert isinstance(ax, mpl.axes.Axes) assert ax.get_xlabel() == "T (K)" assert ax.get_ylabel() == "D (cm$^2$/s)"
[docs] class DiffusionAnalyzerTest(PymatgenTest):
[docs] def test_init(self): # Diffusion vasprun.xmls are rather large. We are only going to use a # very small preprocessed run for testing. Note that the results are # unreliable for short runs. with open(os.path.join(module_dir, "DiffusionAnalyzer.json")) as f: dd = json.load(f) d = DiffusionAnalyzer.from_dict(dd) # large tolerance because scipy constants changed between 0.16.1 and 0.17 self.assertAlmostEqual(d.conductivity, 74.165372613735684, 4) self.assertAlmostEqual(d.chg_conductivity, 232.8278799754324, 4) self.assertAlmostEqual(d.diffusivity, 1.16083658794e-06, 7) self.assertAlmostEqual(d.chg_diffusivity, 3.64565578208e-06, 7) self.assertAlmostEqual(d.conductivity_std_dev, 0.0097244677795984488, 7) self.assertAlmostEqual(d.diffusivity_std_dev, 9.1013023085561779e-09, 7) self.assertAlmostEqual(d.chg_diffusivity_std_dev, 7.20911399729e-10, 5) self.assertAlmostEqual(d.haven_ratio, 0.31854161048867402, 7) assert d.conductivity_components == pytest.approx([45.7903694, 26.1651956, 150.5406140]) assert d.diffusivity_components == pytest.approx([7.49601236e-07, 4.90254273e-07, 2.24649255e-06], rel=0.2) assert d.conductivity_components_std_dev == pytest.approx([0.0063566, 0.0180854, 0.0217918], rel=0.1) assert d.diffusivity_components_std_dev == pytest.approx( [8.9465670e-09, 2.4931224e-08, 2.2636384e-08], abs=1e-3 ) assert d.mscd[0:4] == pytest.approx([0.69131064, 0.71794072, 0.74315283, 0.76703961], abs=1e-3) assert d.max_ion_displacements == pytest.approx( [ 1.4620659693989553, 1.2787303484445025, 3.419618540097756, 2.340104469126246, 2.6080973517594233, 1.3928579365672844, 1.3561505956708932, 1.6699242923686253, 1.0352389639563648, 1.1662520093955808, 1.2322019205885841, 0.8094210554832534, 1.9917808504954169, 1.2684148391206396, 2.392633794162402, 2.566313049232671, 1.3175030435622759, 1.4628945430952793, 1.0984921286753002, 1.2864482076554093, 0.655567027815413, 0.5986961164605746, 0.5639091444309045, 0.6166004192954059, 0.5997911580422605, 0.4374606277579815, 1.1865683960470783, 0.9017064371676591, 0.6644840367853767, 1.0346375380664645, 0.6177630142863979, 0.7952002051914302, 0.7342686123054011, 0.7858047956905577, 0.5570732369065661, 1.0942937746885417, 0.6509372395308788, 1.0876687380413455, 0.7058162184725, 0.8298306317598585, 0.7813913747621343, 0.7337655232056153, 0.9057161616236746, 0.5979093093186919, 0.6830333586985015, 0.7926500894084628, 0.6765180009988608, 0.8555866032968998, 0.713087091642237, 0.7621007695790749, ], ) assert d.sq_disp_ions.shape == (50, 206) assert d.lattices.shape == (1, 3, 3) assert d.mscd.shape == (206,) assert d.mscd.shape == d.msd.shape self.assertAlmostEqual(d.max_framework_displacement, 1.18656839605) ss = list(d.get_drift_corrected_structures(10, 1000, 20)) assert len(ss) == 50 n = random.randint(0, 49) n_orig = n * 20 + 10 assert ss[n].cart_coords - d.structure.cart_coords + d.drift[:, n_orig, :] == pytest.approx( d.disp[:, n_orig, :], ) d = DiffusionAnalyzer.from_dict(d.as_dict()) assert isinstance(d, DiffusionAnalyzer) # Ensure summary dict is json serializable. json.dumps(d.get_summary_dict(include_msd_t=True)) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="max", ) self.assertAlmostEqual(d.conductivity, 74.165372613735684, 4) self.assertAlmostEqual(d.diffusivity, 1.14606446822e-06, 7) self.assertAlmostEqual(d.haven_ratio, 0.318541610489, 6) self.assertAlmostEqual(d.chg_conductivity, 232.8278799754324, 4) self.assertAlmostEqual(d.chg_diffusivity, 3.64565578208e-06, 7) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed=False, ) self.assertAlmostEqual(d.conductivity, 27.20479170406027, 4) self.assertAlmostEqual(d.diffusivity, 4.25976905436e-07, 7) self.assertAlmostEqual(d.chg_diffusivity, 1.6666666666666667e-17, 3) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=100, ) self.assertAlmostEqual(d.conductivity, 47.404056230438741, 4) self.assertAlmostEqual(d.diffusivity, 7.4226016496716148e-07, 7) self.assertAlmostEqual(d.chg_conductivity, 1.06440821953e-09, 4) # Can't average over 2000 steps because this is a 1000-step run. self.assertRaises( # noqa: PT027 ValueError, DiffusionAnalyzer, d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=2000, ) d = DiffusionAnalyzer.from_structures( list(d.get_drift_corrected_structures()), d.specie, d.temperature, d.time_step, d.step_skip, smoothed=d.smoothed, avg_nsteps=100, ) self.assertAlmostEqual(d.conductivity, 47.404056230438741, 4) self.assertAlmostEqual(d.diffusivity, 7.4226016496716148e-07, 7) d.export_msdt("test.csv") with open("test.csv") as f: data = [] for row in csv.reader(f): if row: data.append(row) data.pop(0) data = np.array(data, dtype=np.float64) assert data[:, 1] == pytest.approx(d.msd) assert data[:, -1] == pytest.approx(d.mscd) os.remove("test.csv")
[docs] def test_init_npt(self): # Diffusion vasprun.xmls are rather large. We are only going to use a # very small preprocessed run for testing. Note that the results are # unreliable for short runs. with open(os.path.join(module_dir, "DiffusionAnalyzer_NPT.json")) as f: dd = json.load(f) d = DiffusionAnalyzer.from_dict(dd) # large tolerance because scipy constants changed between 0.16.1 and 0.17 self.assertAlmostEqual(d.conductivity, 499.1504129387108, 4) self.assertAlmostEqual(d.chg_conductivity, 1219.5959181678043, 4) self.assertAlmostEqual(d.diffusivity, 8.40265434771e-06, 7) self.assertAlmostEqual(d.chg_diffusivity, 2.05305709033e-05, 6) self.assertAlmostEqual(d.conductivity_std_dev, 0.10368477696021029, 7) self.assertAlmostEqual(d.diffusivity_std_dev, 9.1013023085561779e-09, 7) self.assertAlmostEqual(d.chg_diffusivity_std_dev, 1.20834853646e-08, 6) self.assertAlmostEqual(d.haven_ratio, 0.409275240679, 7) assert d.conductivity_components == pytest.approx([455.178101, 602.252644, 440.0210014]) assert d.diffusivity_components == pytest.approx([7.66242570e-06, 1.01382648e-05, 7.40727250e-06]) assert d.conductivity_components_std_dev == pytest.approx([0.1196577, 0.0973347, 0.1525400]) assert d.diffusivity_components_std_dev == pytest.approx([2.0143072e-09, 1.6385239e-09, 2.5678445e-09]) assert d.max_ion_displacements == pytest.approx( [ 1.13147881, 0.79899554, 1.04153733, 0.96061850, 0.83039864, 0.70246715, 0.61365911, 0.67965179, 1.91973907, 1.69127386, 1.60568746, 1.35587641, 1.03280378, 0.99202692, 2.03359655, 1.03760269, 1.40228350, 1.36315080, 1.27414979, 1.26742035, 0.88199589, 0.97700804, 1.11323184, 1.00139511, 2.94164403, 0.89438909, 1.41508334, 1.23660358, 0.39322939, 0.54264064, 1.25291806, 0.62869809, 0.40846708, 1.43415505, 0.88891241, 0.56259128, 0.81712740, 0.52700441, 0.51011733, 0.55557882, 0.49131002, 0.66740277, 0.57798671, 0.63521025, 0.50277142, 0.52878021, 0.67803443, 0.81161269, 0.46486345, 0.47132761, 0.74301293, 0.79285519, 0.48789600, 0.61776836, 0.60695847, 0.67767756, 0.70972268, 1.08232442, 0.87871177, 0.84674206, 0.45694693, 0.60417985, 0.61652272, 0.66444583, 0.52211986, 0.56544134, 0.43311443, 0.43027547, 1.10730439, 0.59829728, 0.52270635, 0.72327608, 1.02919775, 0.84423208, 0.61694764, 0.72795752, 0.72957755, 0.55491631, 0.68507454, 0.76745343, 0.96346584, 0.66672645, 1.06810107, 0.65705843, ], ) assert d.sq_disp_ions.shape == (84, 217) assert d.lattices.shape == (1001, 3, 3) assert d.mscd.shape == (217,) assert d.mscd.shape == d.msd.shape self.assertAlmostEqual(d.max_framework_displacement, 1.43415505156) ss = list(d.get_drift_corrected_structures(10, 1000, 20)) assert len(ss) == 50 n = random.randint(0, 49) n_orig = n * 20 + 10 assert ss[n].cart_coords - d.structure.cart_coords + d.drift[:, n_orig, :] == pytest.approx( d.disp[:, n_orig, :] ) d = DiffusionAnalyzer.from_dict(d.as_dict()) assert isinstance(d, DiffusionAnalyzer) # Ensure summary dict is json serializable. json.dumps(d.get_summary_dict(include_msd_t=True)) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="max", ) self.assertAlmostEqual(d.conductivity, 499.1504129387108, 4) self.assertAlmostEqual(d.diffusivity, 8.40265434771e-06, 7) self.assertAlmostEqual(d.haven_ratio, 0.409275240679, 7) self.assertAlmostEqual(d.chg_diffusivity, 2.05305709033e-05, 7) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed=False, ) self.assertAlmostEqual(d.conductivity, 406.5964019770787, 4) self.assertAlmostEqual(d.diffusivity, 6.8446082e-06, 7) self.assertAlmostEqual(d.chg_diffusivity, 1.03585877962e-05, 6) self.assertAlmostEqual(d.haven_ratio, 0.6607665413, 6) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=100, ) self.assertAlmostEqual(d.conductivity, 425.77884571149525, 4) self.assertAlmostEqual(d.diffusivity, 7.167523809142514e-06, 7) self.assertAlmostEqual(d.chg_diffusivity, 9.33480892187e-06, 6) self.assertAlmostEqual(d.haven_ratio, 0.767827586952, 6) self.assertAlmostEqual(d.chg_conductivity, 554.5240271992852, 6) # Can't average over 2000 steps because this is a 1000-step run. self.assertRaises( # noqa: PT027 ValueError, DiffusionAnalyzer, d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=2000, ) d = DiffusionAnalyzer.from_structures( list(d.get_drift_corrected_structures()), d.specie, d.temperature, d.time_step, d.step_skip, smoothed=d.smoothed, avg_nsteps=100, ) self.assertAlmostEqual(d.conductivity, 425.7788457114952, 4) self.assertAlmostEqual(d.diffusivity, 7.1675238091425148e-06, 7) self.assertAlmostEqual(d.haven_ratio, 0.767827586952, 7) self.assertAlmostEqual(d.chg_conductivity, 554.5240271992852, 6) d.export_msdt("test.csv") with open("test.csv") as f: data = [] for row in csv.reader(f): if row: data.append(row) data.pop(0) data = np.array(data, dtype=np.float64) assert data[:, 1] == pytest.approx(d.msd) assert data[:, -1] == pytest.approx(d.mscd) os.remove("test.csv")
[docs] def test_from_structure_NPT(self): coords1 = np.array([[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]]) coords2 = np.array([[0.0, 0.0, 0.0], [0.6, 0.6, 0.6]]) coords3 = np.array([[0.0, 0.0, 0.0], [0.7, 0.7, 0.7]]) lattice1 = Lattice.from_parameters(a=2.0, b=2.0, c=2.0, alpha=90, beta=90, gamma=90) lattice2 = Lattice.from_parameters(a=2.1, b=2.1, c=2.1, alpha=90, beta=90, gamma=90) lattice3 = Lattice.from_parameters(a=2.0, b=2.0, c=2.0, alpha=90, beta=90, gamma=90) s1 = Structure(coords=coords1, lattice=lattice1, species=["F", "Li"]) s2 = Structure(coords=coords2, lattice=lattice2, species=["F", "Li"]) s3 = Structure(coords=coords3, lattice=lattice3, species=["F", "Li"]) structures = [s1, s2, s3] d = DiffusionAnalyzer.from_structures( structures, specie="Li", temperature=500.0, time_step=2.0, step_skip=1, smoothed=None, ) assert d.disp[1] == pytest.approx(np.array([[0.0, 0.0, 0.0], [0.21, 0.21, 0.21], [0.40, 0.40, 0.40]])) ax = d.get_msd_plot() assert isinstance(ax, mpl.axes.Axes)